Spaces:
Runtime error
Runtime error
only from the
Browse files
app.py
CHANGED
|
@@ -15,11 +15,14 @@ from pathlib import Path
|
|
| 15 |
from db import Database
|
| 16 |
import uuid
|
| 17 |
import logging
|
|
|
|
|
|
|
|
|
|
| 18 |
logging.basicConfig(level=os.environ.get("LOGLEVEL", "INFO"))
|
| 19 |
|
| 20 |
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
USE_TORCH_COMPILE = os.environ.get("USE_TORCH_COMPILE", "0") == "1"
|
| 22 |
-
SPACE_ID = os.environ.get(
|
| 23 |
|
| 24 |
DB_PATH = Path("/data/cache") if SPACE_ID else Path("./cache")
|
| 25 |
IMGS_PATH = DB_PATH / "imgs"
|
|
@@ -28,11 +31,6 @@ IMGS_PATH.mkdir(exist_ok=True, parents=True)
|
|
| 28 |
|
| 29 |
database = Database(DB_PATH)
|
| 30 |
|
| 31 |
-
with database() as db:
|
| 32 |
-
cursor = db.cursor()
|
| 33 |
-
cursor.execute("SELECT * FROM cache")
|
| 34 |
-
print(list(cursor.fetchall()))
|
| 35 |
-
|
| 36 |
dtype = torch.bfloat16
|
| 37 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 38 |
if torch.cuda.is_available():
|
|
@@ -96,6 +94,7 @@ def generate(
|
|
| 96 |
app = FastAPI()
|
| 97 |
origins = [
|
| 98 |
"http://huggingface.co",
|
|
|
|
| 99 |
]
|
| 100 |
|
| 101 |
app.add_middleware(
|
|
@@ -107,6 +106,15 @@ app.add_middleware(
|
|
| 107 |
)
|
| 108 |
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
@app.get("/image")
|
| 111 |
async def generate_image(prompt: str, negative_prompt: str, seed: int = 2134213213):
|
| 112 |
cached_img = database.check(prompt, negative_prompt, seed)
|
|
@@ -137,190 +145,3 @@ async def main():
|
|
| 137 |
|
| 138 |
if __name__ == "__main__":
|
| 139 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
# else:
|
| 143 |
-
# prior_pipeline = None
|
| 144 |
-
# decoder_pipeline = None
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
# def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 148 |
-
# if randomize_seed:
|
| 149 |
-
# seed = random.randint(0, MAX_SEED)
|
| 150 |
-
# return seed
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
# def generate(
|
| 154 |
-
# prompt: str,
|
| 155 |
-
# negative_prompt: str = "",
|
| 156 |
-
# seed: int = 0,
|
| 157 |
-
# width: int = 1024,
|
| 158 |
-
# height: int = 1024,
|
| 159 |
-
# prior_num_inference_steps: int = 30,
|
| 160 |
-
# # prior_timesteps: List[float] = None,
|
| 161 |
-
# prior_guidance_scale: float = 4.0,
|
| 162 |
-
# decoder_num_inference_steps: int = 12,
|
| 163 |
-
# # decoder_timesteps: List[float] = None,
|
| 164 |
-
# decoder_guidance_scale: float = 0.0,
|
| 165 |
-
# num_images_per_prompt: int = 2,
|
| 166 |
-
# progress=gr.Progress(track_tqdm=True),
|
| 167 |
-
# ) -> PIL.Image.Image:
|
| 168 |
-
|
| 169 |
-
# generator = torch.Generator().manual_seed(seed)
|
| 170 |
-
# prior_output = prior_pipeline(
|
| 171 |
-
# prompt=prompt,
|
| 172 |
-
# height=height,
|
| 173 |
-
# width=width,
|
| 174 |
-
# num_inference_steps=prior_num_inference_steps,
|
| 175 |
-
# timesteps=DEFAULT_STAGE_C_TIMESTEPS,
|
| 176 |
-
# negative_prompt=negative_prompt,
|
| 177 |
-
# guidance_scale=prior_guidance_scale,
|
| 178 |
-
# num_images_per_prompt=num_images_per_prompt,
|
| 179 |
-
# generator=generator,
|
| 180 |
-
# )
|
| 181 |
-
# decoder_output = decoder_pipeline(
|
| 182 |
-
# image_embeddings=prior_output.image_embeddings,
|
| 183 |
-
# prompt=prompt,
|
| 184 |
-
# num_inference_steps=decoder_num_inference_steps,
|
| 185 |
-
# # timesteps=decoder_timesteps,
|
| 186 |
-
# guidance_scale=decoder_guidance_scale,
|
| 187 |
-
# negative_prompt=negative_prompt,
|
| 188 |
-
# generator=generator,
|
| 189 |
-
# output_type="pil",
|
| 190 |
-
# ).images
|
| 191 |
-
|
| 192 |
-
# return decoder_output[0]
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
# examples = [
|
| 196 |
-
# "An astronaut riding a green horse",
|
| 197 |
-
# "A mecha robot in a favela by Tarsila do Amaral",
|
| 198 |
-
# "The sprirt of a Tamagotchi wandering in the city of Los Angeles",
|
| 199 |
-
# "A delicious feijoada ramen dish"
|
| 200 |
-
# ]
|
| 201 |
-
|
| 202 |
-
# with gr.Blocks() as demo:
|
| 203 |
-
# gr.Markdown(DESCRIPTION)
|
| 204 |
-
# gr.DuplicateButton(
|
| 205 |
-
# value="Duplicate Space for private use",
|
| 206 |
-
# elem_id="duplicate-button",
|
| 207 |
-
# visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
| 208 |
-
# )
|
| 209 |
-
# with gr.Group():
|
| 210 |
-
# with gr.Row():
|
| 211 |
-
# prompt = gr.Text(
|
| 212 |
-
# label="Prompt",
|
| 213 |
-
# show_label=False,
|
| 214 |
-
# max_lines=1,
|
| 215 |
-
# placeholder="Enter your prompt",
|
| 216 |
-
# container=False,
|
| 217 |
-
# )
|
| 218 |
-
# run_button = gr.Button("Run", scale=0)
|
| 219 |
-
# result = gr.Image(label="Result", show_label=False)
|
| 220 |
-
# with gr.Accordion("Advanced options", open=False):
|
| 221 |
-
# negative_prompt = gr.Text(
|
| 222 |
-
# label="Negative prompt",
|
| 223 |
-
# max_lines=1,
|
| 224 |
-
# placeholder="Enter a Negative Prompt",
|
| 225 |
-
# )
|
| 226 |
-
|
| 227 |
-
# seed = gr.Slider(
|
| 228 |
-
# label="Seed",
|
| 229 |
-
# minimum=0,
|
| 230 |
-
# maximum=MAX_SEED,
|
| 231 |
-
# step=1,
|
| 232 |
-
# value=0,
|
| 233 |
-
# )
|
| 234 |
-
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 235 |
-
# with gr.Row():
|
| 236 |
-
# width = gr.Slider(
|
| 237 |
-
# label="Width",
|
| 238 |
-
# minimum=1024,
|
| 239 |
-
# maximum=1536,
|
| 240 |
-
# step=512,
|
| 241 |
-
# value=1024,
|
| 242 |
-
# )
|
| 243 |
-
# height = gr.Slider(
|
| 244 |
-
# label="Height",
|
| 245 |
-
# minimum=1024,
|
| 246 |
-
# maximum=1536,
|
| 247 |
-
# step=512,
|
| 248 |
-
# value=1024,
|
| 249 |
-
# )
|
| 250 |
-
# num_images_per_prompt = gr.Slider(
|
| 251 |
-
# label="Number of Images",
|
| 252 |
-
# minimum=1,
|
| 253 |
-
# maximum=2,
|
| 254 |
-
# step=1,
|
| 255 |
-
# value=1,
|
| 256 |
-
# )
|
| 257 |
-
# with gr.Row():
|
| 258 |
-
# prior_guidance_scale = gr.Slider(
|
| 259 |
-
# label="Prior Guidance Scale",
|
| 260 |
-
# minimum=0,
|
| 261 |
-
# maximum=20,
|
| 262 |
-
# step=0.1,
|
| 263 |
-
# value=4.0,
|
| 264 |
-
# )
|
| 265 |
-
# prior_num_inference_steps = gr.Slider(
|
| 266 |
-
# label="Prior Inference Steps",
|
| 267 |
-
# minimum=10,
|
| 268 |
-
# maximum=30,
|
| 269 |
-
# step=1,
|
| 270 |
-
# value=20,
|
| 271 |
-
# )
|
| 272 |
-
|
| 273 |
-
# decoder_guidance_scale = gr.Slider(
|
| 274 |
-
# label="Decoder Guidance Scale",
|
| 275 |
-
# minimum=0,
|
| 276 |
-
# maximum=0,
|
| 277 |
-
# step=0.1,
|
| 278 |
-
# value=0.0,
|
| 279 |
-
# )
|
| 280 |
-
# decoder_num_inference_steps = gr.Slider(
|
| 281 |
-
# label="Decoder Inference Steps",
|
| 282 |
-
# minimum=4,
|
| 283 |
-
# maximum=12,
|
| 284 |
-
# step=1,
|
| 285 |
-
# value=10,
|
| 286 |
-
# )
|
| 287 |
-
|
| 288 |
-
# gr.Examples(
|
| 289 |
-
# examples=examples,
|
| 290 |
-
# inputs=prompt,
|
| 291 |
-
# outputs=result,
|
| 292 |
-
# fn=generate,
|
| 293 |
-
# cache_examples=False,
|
| 294 |
-
# )
|
| 295 |
-
|
| 296 |
-
# inputs = [
|
| 297 |
-
# prompt,
|
| 298 |
-
# negative_prompt,
|
| 299 |
-
# seed,
|
| 300 |
-
# width,
|
| 301 |
-
# height,
|
| 302 |
-
# prior_num_inference_steps,
|
| 303 |
-
# # prior_timesteps,
|
| 304 |
-
# prior_guidance_scale,
|
| 305 |
-
# decoder_num_inference_steps,
|
| 306 |
-
# # decoder_timesteps,
|
| 307 |
-
# decoder_guidance_scale,
|
| 308 |
-
# num_images_per_prompt,
|
| 309 |
-
# ]
|
| 310 |
-
# gr.on(
|
| 311 |
-
# triggers=[prompt.submit, negative_prompt.submit, run_button.click],
|
| 312 |
-
# fn=randomize_seed_fn,
|
| 313 |
-
# inputs=[seed, randomize_seed],
|
| 314 |
-
# outputs=seed,
|
| 315 |
-
# queue=False,
|
| 316 |
-
# api_name=False,
|
| 317 |
-
# ).then(
|
| 318 |
-
# fn=generate,
|
| 319 |
-
# inputs=inputs,
|
| 320 |
-
# outputs=result,
|
| 321 |
-
# api_name="run",
|
| 322 |
-
# )
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
# if __name__ == "__main__":
|
| 326 |
-
# demo.queue(max_size=20).launch()
|
|
|
|
| 15 |
from db import Database
|
| 16 |
import uuid
|
| 17 |
import logging
|
| 18 |
+
from fastapi import FastAPI, Request, HTTPException
|
| 19 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 20 |
+
|
| 21 |
logging.basicConfig(level=os.environ.get("LOGLEVEL", "INFO"))
|
| 22 |
|
| 23 |
MAX_SEED = np.iinfo(np.int32).max
|
| 24 |
USE_TORCH_COMPILE = os.environ.get("USE_TORCH_COMPILE", "0") == "1"
|
| 25 |
+
SPACE_ID = os.environ.get("SPACE_ID", "")
|
| 26 |
|
| 27 |
DB_PATH = Path("/data/cache") if SPACE_ID else Path("./cache")
|
| 28 |
IMGS_PATH = DB_PATH / "imgs"
|
|
|
|
| 31 |
|
| 32 |
database = Database(DB_PATH)
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
dtype = torch.bfloat16
|
| 35 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 36 |
if torch.cuda.is_available():
|
|
|
|
| 94 |
app = FastAPI()
|
| 95 |
origins = [
|
| 96 |
"http://huggingface.co",
|
| 97 |
+
"localhost",
|
| 98 |
]
|
| 99 |
|
| 100 |
app.add_middleware(
|
|
|
|
| 106 |
)
|
| 107 |
|
| 108 |
|
| 109 |
+
@app.middleware("http")
|
| 110 |
+
async def validate_origin(request: Request, call_next):
|
| 111 |
+
logging.info(f"Request origin: {request.headers.get('origin')}")
|
| 112 |
+
if request.headers.get("origin") not in origins:
|
| 113 |
+
raise HTTPException(status_code=403, detail="Forbidden")
|
| 114 |
+
response = await call_next(request)
|
| 115 |
+
return response
|
| 116 |
+
|
| 117 |
+
|
| 118 |
@app.get("/image")
|
| 119 |
async def generate_image(prompt: str, negative_prompt: str, seed: int = 2134213213):
|
| 120 |
cached_img = database.check(prompt, negative_prompt, seed)
|
|
|
|
| 145 |
|
| 146 |
if __name__ == "__main__":
|
| 147 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|