Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import PyPDF2
|
| 3 |
+
import tempfile
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
|
| 6 |
+
# Step 1: Summarizer class using HuggingFace directly
|
| 7 |
+
class TextSummarizer:
|
| 8 |
+
def __init__(self):
|
| 9 |
+
self.summarizer = pipeline(
|
| 10 |
+
"summarization",
|
| 11 |
+
model="facebook/bart-large-cnn"
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
def summarize_text(self, article_text, max_length=150, min_length=30):
|
| 15 |
+
# Truncate very long inputs
|
| 16 |
+
article_text = article_text.strip()
|
| 17 |
+
if len(article_text) > 1024:
|
| 18 |
+
article_text = article_text[:1024]
|
| 19 |
+
|
| 20 |
+
summary = self.summarizer(
|
| 21 |
+
article_text,
|
| 22 |
+
max_length=max_length,
|
| 23 |
+
min_length=min_length,
|
| 24 |
+
do_sample=False
|
| 25 |
+
)
|
| 26 |
+
return summary[0]['summary_text'] if summary else "No summary generated."
|
| 27 |
+
|
| 28 |
+
# Step 2: PDF text extraction
|
| 29 |
+
def pdf_to_text(pdf_file):
|
| 30 |
+
try:
|
| 31 |
+
with tempfile.NamedTemporaryFile(delete=False) as tmp:
|
| 32 |
+
tmp.write(pdf_file)
|
| 33 |
+
tmp.flush()
|
| 34 |
+
reader = PyPDF2.PdfReader(tmp.name)
|
| 35 |
+
text = "\n".join(page.extract_text() or "" for page in reader.pages)
|
| 36 |
+
return text.strip() if text.strip() else "No extractable text found in the PDF."
|
| 37 |
+
except Exception as e:
|
| 38 |
+
return f"Error reading PDF: {str(e)}"
|
| 39 |
+
|
| 40 |
+
# Step 3: Summarization function for Gradio
|
| 41 |
+
summarizer = TextSummarizer()
|
| 42 |
+
|
| 43 |
+
def summarize_input(text, max_words):
|
| 44 |
+
if not text.strip():
|
| 45 |
+
return "Please enter or extract some text first."
|
| 46 |
+
try:
|
| 47 |
+
max_length = int(max_words)
|
| 48 |
+
min_length = max(30, max_length // 4)
|
| 49 |
+
return summarizer.summarize_text(text, max_length=max_length, min_length=min_length)
|
| 50 |
+
except Exception as e:
|
| 51 |
+
return f"Error during summarization: {str(e)}"
|
| 52 |
+
|
| 53 |
+
# Step 4: Gradio UI setup
|
| 54 |
+
with gr.Blocks() as demo:
|
| 55 |
+
gr.Markdown("## 📝 Text & PDF Summarizer")
|
| 56 |
+
|
| 57 |
+
with gr.Row():
|
| 58 |
+
text_input = gr.Textbox(label="Enter text to summarize", lines=15, placeholder="Paste your text here...")
|
| 59 |
+
pdf_file = gr.File(label="Or upload a PDF", file_types=[".pdf"], type="binary")
|
| 60 |
+
|
| 61 |
+
max_words = gr.Number(label="Max summary word count", value=150, precision=0)
|
| 62 |
+
|
| 63 |
+
with gr.Row():
|
| 64 |
+
convert_btn = gr.Button("Convert PDF to Text")
|
| 65 |
+
summarize_btn = gr.Button("Summarize Text")
|
| 66 |
+
|
| 67 |
+
output_text = gr.Textbox(label="Summary", lines=10)
|
| 68 |
+
|
| 69 |
+
convert_btn.click(fn=pdf_to_text, inputs=pdf_file, outputs=text_input)
|
| 70 |
+
summarize_btn.click(fn=summarize_input, inputs=[text_input, max_words], outputs=output_text)
|
| 71 |
+
|
| 72 |
+
# Step 5: Launch the app
|
| 73 |
+
if __name__ == "__main__":
|
| 74 |
+
demo.launch()
|