Spaces:
Sleeping
Sleeping
Prepare HF Space
Browse files- README.md +17 -8
- launch.py +37 -0
- mira/__init__.py +1 -0
- mira/model.py +74 -0
- mira/utils.py +11 -0
- requirements.txt +11 -0
- web_ui.py +336 -0
README.md
CHANGED
|
@@ -1,12 +1,21 @@
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
-
title: Mira
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
-
app_file:
|
| 9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
-
|
| 12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
+
# MiraTTS
|
| 2 |
+
|
| 3 |
---
|
| 4 |
+
title: Mira-TTS
|
| 5 |
+
emoji: ~Z
|
| 6 |
+
colorFrom: yellow
|
| 7 |
+
colorTo: yellow
|
| 8 |
sdk: gradio
|
| 9 |
+
sdk_version: 5.50.0
|
| 10 |
+
app_file: webui.py
|
| 11 |
pinned: false
|
| 12 |
+
license: apache-2.0
|
| 13 |
+
short_description: (Unofficial) Gradio demo for MiraTTS
|
| 14 |
+
models:
|
| 15 |
+
- YatharthS/MiraTTS
|
| 16 |
+
tags:
|
| 17 |
+
- text-to-speech
|
| 18 |
+
- voice-cloning
|
| 19 |
+
- speech-synthesis
|
| 20 |
+
python_version: "3.12"
|
| 21 |
---
|
|
|
|
|
|
launch.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Launch script for MiraTTS Web Interface
|
| 4 |
+
Simple wrapper to start the web UI with common configurations
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import subprocess
|
| 8 |
+
import sys
|
| 9 |
+
import argparse
|
| 10 |
+
|
| 11 |
+
def main():
|
| 12 |
+
parser = argparse.ArgumentParser(description="Launch MiraTTS Web Interface")
|
| 13 |
+
parser.add_argument("--port", type=int, default=7860, help="Port to run on")
|
| 14 |
+
parser.add_argument("--host", default="127.0.0.1", help="Host to bind to")
|
| 15 |
+
parser.add_argument("--share", action="store_true", help="Create public share link")
|
| 16 |
+
parser.add_argument("--model", default="YatharthS/MiraTTS", help="Model path or HF model ID")
|
| 17 |
+
|
| 18 |
+
args = parser.parse_args()
|
| 19 |
+
|
| 20 |
+
cmd = [
|
| 21 |
+
sys.executable, "web_ui.py",
|
| 22 |
+
"--server_name", args.host,
|
| 23 |
+
"--server_port", str(args.port),
|
| 24 |
+
"--model_dir", args.model
|
| 25 |
+
]
|
| 26 |
+
|
| 27 |
+
if args.share:
|
| 28 |
+
cmd.append("--share")
|
| 29 |
+
|
| 30 |
+
print(f"Launching MiraTTS Web Interface...")
|
| 31 |
+
print(f"Model: {args.model}")
|
| 32 |
+
print(f"URL: http://{args.host}:{args.port}")
|
| 33 |
+
|
| 34 |
+
subprocess.run(cmd)
|
| 35 |
+
|
| 36 |
+
if __name__ == "__main__":
|
| 37 |
+
main()
|
mira/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
mira/model.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gc
|
| 2 |
+
import torch
|
| 3 |
+
from itertools import cycle
|
| 4 |
+
from ncodec.codec import TTSCodec
|
| 5 |
+
from lmdeploy import pipeline, GenerationConfig, TurbomindEngineConfig
|
| 6 |
+
|
| 7 |
+
from mira.utils import clear_cache, split_text
|
| 8 |
+
|
| 9 |
+
class MiraTTS:
|
| 10 |
+
|
| 11 |
+
def __init__(self, model_dir="YatharthS/MiraTTS", tp=1, enable_prefix_caching=True, cache_max_entry_count=0.2):
|
| 12 |
+
|
| 13 |
+
backend_config = TurbomindEngineConfig(cache_max_entry_count=cache_max_entry_count, tp=tp, dtype='bfloat16', enable_prefix_caching=enable_prefix_caching)
|
| 14 |
+
self.pipe = pipeline(model_dir, backend_config=backend_config)
|
| 15 |
+
self.gen_config = GenerationConfig(top_p=0.95,
|
| 16 |
+
top_k=50,
|
| 17 |
+
temperature=0.8,
|
| 18 |
+
max_new_tokens=1024,
|
| 19 |
+
repetition_penalty=1.2,
|
| 20 |
+
do_sample=True,
|
| 21 |
+
min_p=0.05)
|
| 22 |
+
self.codec = TTSCodec()
|
| 23 |
+
|
| 24 |
+
def set_params(self, top_p=0.95, top_k=50, temperature=0.8, max_new_tokens=1024, repetition_penalty=1.2, min_p=0.05):
|
| 25 |
+
"""sets sampling parameters for the llm"""
|
| 26 |
+
|
| 27 |
+
self.gen_config = GenerationConfig(top_p=top_p, top_k=top_k, temperature=temperature, max_new_tokens=max_new_tokens, repetition_penalty=repetition_penalty, min_p=min_p, do_sample=True)
|
| 28 |
+
|
| 29 |
+
def c_cache(self):
|
| 30 |
+
clear_cache()
|
| 31 |
+
|
| 32 |
+
def split_text(self, text):
|
| 33 |
+
return split_text(text)
|
| 34 |
+
|
| 35 |
+
def encode_audio(self, audio_file):
|
| 36 |
+
"""encodes audio into context tokens"""
|
| 37 |
+
|
| 38 |
+
context_tokens = self.codec.encode(audio_file)
|
| 39 |
+
return context_tokens
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def generate(self, text, context_tokens):
|
| 43 |
+
"""generates speech from input text"""
|
| 44 |
+
formatted_prompt = self.codec.format_prompt(text, context_tokens, None)
|
| 45 |
+
|
| 46 |
+
response = self.pipe([formatted_prompt], gen_config=self.gen_config, do_preprocess=False)
|
| 47 |
+
audio = self.codec.decode(response[0].text, context_tokens)
|
| 48 |
+
return audio
|
| 49 |
+
|
| 50 |
+
def batch_generate(self, prompts, context_tokens):
|
| 51 |
+
"""
|
| 52 |
+
Generates speech from text, for larger batch size
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
prompt (list): Input for tts model, list of prompts
|
| 56 |
+
voice (list): Description of voice, list of voices respective to prompt
|
| 57 |
+
"""
|
| 58 |
+
formatted_prompts = []
|
| 59 |
+
for prompt, context_token in zip(prompts, cycle(context_tokens)):
|
| 60 |
+
formatted_prompt = self.codec.format_prompt(prompt, context_token, None)
|
| 61 |
+
formatted_prompts.append(formatted_prompt)
|
| 62 |
+
|
| 63 |
+
responses = self.pipe(formatted_prompts, gen_config=self.gen_config, do_preprocess=False)
|
| 64 |
+
generated_tokens = [response.text for response in responses]
|
| 65 |
+
|
| 66 |
+
audios = []
|
| 67 |
+
for generated_token, context_token in zip(generated_tokens, cycle(context_tokens)):
|
| 68 |
+
audio = self.codec.decode(generated_token, context_token)
|
| 69 |
+
audios.append(audio)
|
| 70 |
+
audios = torch.cat(audios, dim=0)
|
| 71 |
+
|
| 72 |
+
return audios
|
| 73 |
+
|
| 74 |
+
|
mira/utils.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import gc
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
def split_text(text):
|
| 6 |
+
sentences = re.split(r'(?<=[.!?])\s+', text)
|
| 7 |
+
return sentences
|
| 8 |
+
|
| 9 |
+
def clear_cache():
|
| 10 |
+
gc.collect()
|
| 11 |
+
torch.cuda.empty_cache()
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
lmdeploy
|
| 2 |
+
librosa
|
| 3 |
+
fastaudiosr @ git+https://github.com/ysharma3501/FlashSR.git
|
| 4 |
+
ncodec @ git+https://github.com/ysharma3501/FastBiCodec.git
|
| 5 |
+
einops
|
| 6 |
+
onnxruntime-gpu
|
| 7 |
+
soundfile
|
| 8 |
+
torch
|
| 9 |
+
torchaudio
|
| 10 |
+
transformers
|
| 11 |
+
omegaconf
|
web_ui.py
ADDED
|
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import soundfile as sf
|
| 4 |
+
import logging
|
| 5 |
+
import argparse
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
from mira.model import MiraTTS
|
| 9 |
+
|
| 10 |
+
MODEL = None
|
| 11 |
+
|
| 12 |
+
def initialize_model(model_dir="YatharthS/MiraTTS"):
|
| 13 |
+
"""Load the MiraTTS model once at the beginning."""
|
| 14 |
+
logging.info(f"Loading MiraTTS model from: {model_dir}")
|
| 15 |
+
model = MiraTTS(model_dir)
|
| 16 |
+
return model
|
| 17 |
+
|
| 18 |
+
def generate_audio(text, prompt_audio_path):
|
| 19 |
+
"""Generate audio from text using MiraTTS with voice cloning."""
|
| 20 |
+
global MODEL
|
| 21 |
+
|
| 22 |
+
if MODEL is None:
|
| 23 |
+
MODEL = initialize_model()
|
| 24 |
+
|
| 25 |
+
try:
|
| 26 |
+
# Encode the prompt audio
|
| 27 |
+
context_tokens = MODEL.encode_audio(prompt_audio_path)
|
| 28 |
+
|
| 29 |
+
# Generate audio
|
| 30 |
+
audio = MODEL.generate(text, context_tokens)
|
| 31 |
+
|
| 32 |
+
# Convert to numpy array if it's a tensor and handle dtype
|
| 33 |
+
if torch.is_tensor(audio):
|
| 34 |
+
audio = audio.cpu().numpy()
|
| 35 |
+
|
| 36 |
+
# Ensure correct dtype for soundfile (convert from float16 to float32)
|
| 37 |
+
if audio.dtype == 'float16':
|
| 38 |
+
audio = audio.astype('float32')
|
| 39 |
+
elif audio.dtype not in ['float32', 'float64', 'int16', 'int32']:
|
| 40 |
+
audio = audio.astype('float32')
|
| 41 |
+
|
| 42 |
+
return audio, 48000 # Return audio and sample rate
|
| 43 |
+
except Exception as e:
|
| 44 |
+
logging.error(f"Error during generation: {e}")
|
| 45 |
+
raise e
|
| 46 |
+
|
| 47 |
+
def run_tts(text, prompt_audio_path, save_dir="results"):
|
| 48 |
+
"""Perform TTS inference and save the generated audio."""
|
| 49 |
+
logging.info(f"Saving audio to: {save_dir}")
|
| 50 |
+
|
| 51 |
+
# Ensure the save directory exists
|
| 52 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 53 |
+
|
| 54 |
+
# Generate unique filename using timestamp
|
| 55 |
+
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
|
| 56 |
+
save_path = os.path.join(save_dir, f"mira_tts_{timestamp}.wav")
|
| 57 |
+
|
| 58 |
+
logging.info("Starting MiraTTS inference...")
|
| 59 |
+
|
| 60 |
+
# Generate audio
|
| 61 |
+
audio, sample_rate = generate_audio(text, prompt_audio_path)
|
| 62 |
+
|
| 63 |
+
# Save audio file
|
| 64 |
+
sf.write(save_path, audio, samplerate=sample_rate)
|
| 65 |
+
|
| 66 |
+
logging.info(f"Audio saved at: {save_path}")
|
| 67 |
+
return save_path
|
| 68 |
+
|
| 69 |
+
def voice_clone_callback(text, prompt_audio_upload, prompt_audio_record):
|
| 70 |
+
"""Gradio callback for voice cloning using MiraTTS."""
|
| 71 |
+
if not text.strip():
|
| 72 |
+
return None
|
| 73 |
+
|
| 74 |
+
# Use uploaded audio or recorded audio
|
| 75 |
+
prompt_audio = prompt_audio_upload if prompt_audio_upload else prompt_audio_record
|
| 76 |
+
|
| 77 |
+
if not prompt_audio:
|
| 78 |
+
return None
|
| 79 |
+
|
| 80 |
+
try:
|
| 81 |
+
audio_output_path = run_tts(text, prompt_audio)
|
| 82 |
+
return audio_output_path
|
| 83 |
+
except Exception as e:
|
| 84 |
+
logging.error(f"Error in voice cloning: {e}")
|
| 85 |
+
return None
|
| 86 |
+
|
| 87 |
+
def voice_creation_callback(text, temperature, top_p, top_k):
|
| 88 |
+
"""Gradio callback for creating synthetic voice with custom parameters."""
|
| 89 |
+
if not text.strip():
|
| 90 |
+
return None
|
| 91 |
+
|
| 92 |
+
global MODEL
|
| 93 |
+
|
| 94 |
+
if MODEL is None:
|
| 95 |
+
MODEL = initialize_model()
|
| 96 |
+
|
| 97 |
+
try:
|
| 98 |
+
# Set custom generation parameters
|
| 99 |
+
MODEL.set_params(
|
| 100 |
+
temperature=temperature,
|
| 101 |
+
top_p=top_p,
|
| 102 |
+
top_k=top_k,
|
| 103 |
+
max_new_tokens=1024,
|
| 104 |
+
repetition_penalty=1.2
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
# Use a default voice context (you may want to provide default audio files)
|
| 108 |
+
# Check multiple possible paths for example audio
|
| 109 |
+
possible_paths = [
|
| 110 |
+
"/models3/src/MiraTTS/models/MiraTTS/example1.wav",
|
| 111 |
+
"models/MiraTTS/example1.wav",
|
| 112 |
+
"./models/MiraTTS/example1.wav"
|
| 113 |
+
]
|
| 114 |
+
|
| 115 |
+
default_audio = None
|
| 116 |
+
for path in possible_paths:
|
| 117 |
+
if os.path.exists(path):
|
| 118 |
+
default_audio = path
|
| 119 |
+
break
|
| 120 |
+
|
| 121 |
+
if default_audio:
|
| 122 |
+
# Generate audio with dtype conversion
|
| 123 |
+
context_tokens = MODEL.encode_audio(default_audio)
|
| 124 |
+
audio = MODEL.generate(text, context_tokens)
|
| 125 |
+
|
| 126 |
+
# Handle tensor conversion and dtype
|
| 127 |
+
if torch.is_tensor(audio):
|
| 128 |
+
audio = audio.cpu().numpy()
|
| 129 |
+
|
| 130 |
+
# Ensure correct dtype for soundfile
|
| 131 |
+
if audio.dtype == 'float16':
|
| 132 |
+
audio = audio.astype('float32')
|
| 133 |
+
elif audio.dtype not in ['float32', 'float64', 'int16', 'int32']:
|
| 134 |
+
audio = audio.astype('float32')
|
| 135 |
+
|
| 136 |
+
# Save the audio
|
| 137 |
+
os.makedirs("results", exist_ok=True)
|
| 138 |
+
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
|
| 139 |
+
save_path = os.path.join("results", f"mira_tts_creation_{timestamp}.wav")
|
| 140 |
+
sf.write(save_path, audio, samplerate=48000)
|
| 141 |
+
|
| 142 |
+
return save_path
|
| 143 |
+
else:
|
| 144 |
+
logging.warning("No default audio found for voice creation")
|
| 145 |
+
return None
|
| 146 |
+
|
| 147 |
+
except Exception as e:
|
| 148 |
+
logging.error(f"Error in voice creation: {e}")
|
| 149 |
+
return None
|
| 150 |
+
|
| 151 |
+
def build_ui():
|
| 152 |
+
"""Build the Gradio interface similar to SparkTTS."""
|
| 153 |
+
|
| 154 |
+
with gr.Blocks(title="MiraTTS Web Interface") as demo:
|
| 155 |
+
# Title
|
| 156 |
+
gr.HTML('<h1 style="text-align: center;">MiraTTS - High Quality Voice Synthesis</h1>')
|
| 157 |
+
|
| 158 |
+
# Description
|
| 159 |
+
gr.Markdown("""
|
| 160 |
+
MiraTTS is a highly optimized Text-to-Speech model based on Spark-TTS with LMDeploy acceleration.
|
| 161 |
+
It provides over 100x realtime generation speed with high-quality 48kHz audio output.
|
| 162 |
+
""")
|
| 163 |
+
|
| 164 |
+
with gr.Tabs():
|
| 165 |
+
# Voice Clone Tab
|
| 166 |
+
with gr.TabItem("Voice Clone"):
|
| 167 |
+
gr.Markdown("### Clone any voice using a reference audio sample")
|
| 168 |
+
|
| 169 |
+
with gr.Row():
|
| 170 |
+
prompt_audio_upload = gr.Audio(
|
| 171 |
+
sources="upload",
|
| 172 |
+
type="filepath",
|
| 173 |
+
label="Upload Reference Audio (recommended: 3-30 seconds, 16kHz+)",
|
| 174 |
+
)
|
| 175 |
+
prompt_audio_record = gr.Audio(
|
| 176 |
+
sources="microphone",
|
| 177 |
+
type="filepath",
|
| 178 |
+
label="Record Reference Audio",
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
text_input = gr.Textbox(
|
| 182 |
+
label="Text to Synthesize",
|
| 183 |
+
lines=3,
|
| 184 |
+
placeholder="Enter the text you want to convert to speech...",
|
| 185 |
+
value="Hello! This is a demonstration of MiraTTS voice cloning capabilities."
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
with gr.Row():
|
| 189 |
+
clone_button = gr.Button("Generate Audio", variant="primary")
|
| 190 |
+
clear_button = gr.Button("Clear")
|
| 191 |
+
|
| 192 |
+
audio_output_clone = gr.Audio(
|
| 193 |
+
label="Generated Audio",
|
| 194 |
+
autoplay=True
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
clone_button.click(
|
| 198 |
+
voice_clone_callback,
|
| 199 |
+
inputs=[text_input, prompt_audio_upload, prompt_audio_record],
|
| 200 |
+
outputs=[audio_output_clone],
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
clear_button.click(
|
| 204 |
+
lambda: (None, None, "", None),
|
| 205 |
+
outputs=[prompt_audio_upload, prompt_audio_record, text_input, audio_output_clone]
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
# Voice Creation Tab
|
| 209 |
+
with gr.TabItem("Voice Creation"):
|
| 210 |
+
gr.Markdown("### Create synthetic voices with custom parameters")
|
| 211 |
+
|
| 212 |
+
with gr.Row():
|
| 213 |
+
with gr.Column():
|
| 214 |
+
text_input_creation = gr.Textbox(
|
| 215 |
+
label="Text to Synthesize",
|
| 216 |
+
lines=3,
|
| 217 |
+
placeholder="Enter text here...",
|
| 218 |
+
value="You can create customized voices by adjusting the generation parameters below."
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
with gr.Row():
|
| 222 |
+
temperature = gr.Slider(
|
| 223 |
+
minimum=0.1,
|
| 224 |
+
maximum=1.5,
|
| 225 |
+
step=0.1,
|
| 226 |
+
value=0.8,
|
| 227 |
+
label="Temperature (creativity)"
|
| 228 |
+
)
|
| 229 |
+
top_p = gr.Slider(
|
| 230 |
+
minimum=0.1,
|
| 231 |
+
maximum=1.0,
|
| 232 |
+
step=0.05,
|
| 233 |
+
value=0.95,
|
| 234 |
+
label="Top-p (nucleus sampling)"
|
| 235 |
+
)
|
| 236 |
+
top_k = gr.Slider(
|
| 237 |
+
minimum=1,
|
| 238 |
+
maximum=100,
|
| 239 |
+
step=1,
|
| 240 |
+
value=50,
|
| 241 |
+
label="Top-k (vocabulary size)"
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
with gr.Column():
|
| 245 |
+
create_button = gr.Button("Create Voice", variant="primary")
|
| 246 |
+
audio_output_creation = gr.Audio(
|
| 247 |
+
label="Generated Audio",
|
| 248 |
+
autoplay=True
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
create_button.click(
|
| 252 |
+
voice_creation_callback,
|
| 253 |
+
inputs=[text_input_creation, temperature, top_p, top_k],
|
| 254 |
+
outputs=[audio_output_creation],
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
# About Tab
|
| 258 |
+
with gr.TabItem("About"):
|
| 259 |
+
gr.Markdown("""
|
| 260 |
+
## About MiraTTS
|
| 261 |
+
|
| 262 |
+
MiraTTS is an optimized version of Spark-TTS with the following features:
|
| 263 |
+
|
| 264 |
+
- **Ultra-fast generation**: Over 100x realtime speed using LMDeploy optimization
|
| 265 |
+
- **High quality**: Generates crisp 48kHz audio outputs
|
| 266 |
+
- **Memory efficient**: Works within 6GB VRAM
|
| 267 |
+
- **Low latency**: As low as 100ms generation time
|
| 268 |
+
- **Voice cloning**: Clone any voice from a short audio sample
|
| 269 |
+
|
| 270 |
+
### Model Information
|
| 271 |
+
- Base model: Spark-TTS-0.5B
|
| 272 |
+
- Optimization: LMDeploy + FlashSR
|
| 273 |
+
- Sample rate: 48kHz
|
| 274 |
+
- Model size: ~500M parameters
|
| 275 |
+
|
| 276 |
+
### Usage Tips
|
| 277 |
+
- For voice cloning, use clear audio samples between 3-30 seconds
|
| 278 |
+
- Ensure reference audio is at least 16kHz quality
|
| 279 |
+
- Longer text inputs may require more memory
|
| 280 |
+
- Adjust generation parameters for different voice styles
|
| 281 |
+
""")
|
| 282 |
+
|
| 283 |
+
return demo
|
| 284 |
+
|
| 285 |
+
def parse_arguments():
|
| 286 |
+
"""Parse command-line arguments."""
|
| 287 |
+
parser = argparse.ArgumentParser(description="MiraTTS Gradio Web Interface")
|
| 288 |
+
parser.add_argument(
|
| 289 |
+
"--model_dir",
|
| 290 |
+
type=str,
|
| 291 |
+
default="YatharthS/MiraTTS",
|
| 292 |
+
help="Path to the MiraTTS model directory or HuggingFace model ID"
|
| 293 |
+
)
|
| 294 |
+
parser.add_argument(
|
| 295 |
+
"--server_name",
|
| 296 |
+
type=str,
|
| 297 |
+
default="127.0.0.1",
|
| 298 |
+
help="Server host/IP for Gradio app"
|
| 299 |
+
)
|
| 300 |
+
parser.add_argument(
|
| 301 |
+
"--server_port",
|
| 302 |
+
type=int,
|
| 303 |
+
default=7860,
|
| 304 |
+
help="Server port for Gradio app"
|
| 305 |
+
)
|
| 306 |
+
parser.add_argument(
|
| 307 |
+
"--share",
|
| 308 |
+
action="store_true",
|
| 309 |
+
help="Create a public shareable link"
|
| 310 |
+
)
|
| 311 |
+
return parser.parse_args()
|
| 312 |
+
|
| 313 |
+
if __name__ == "__main__":
|
| 314 |
+
# Configure logging
|
| 315 |
+
logging.basicConfig(
|
| 316 |
+
level=logging.INFO,
|
| 317 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
# Parse arguments
|
| 321 |
+
args = parse_arguments()
|
| 322 |
+
|
| 323 |
+
# Initialize model
|
| 324 |
+
logging.info("Initializing MiraTTS model...")
|
| 325 |
+
MODEL = initialize_model(args.model_dir)
|
| 326 |
+
|
| 327 |
+
# Build and launch interface
|
| 328 |
+
logging.info("Building Gradio interface...")
|
| 329 |
+
demo = build_ui()
|
| 330 |
+
|
| 331 |
+
logging.info(f"Launching web interface on {args.server_name}:{args.server_port}")
|
| 332 |
+
demo.launch(
|
| 333 |
+
server_name=args.server_name,
|
| 334 |
+
server_port=args.server_port,
|
| 335 |
+
share=args.share
|
| 336 |
+
)
|