Spaces:
Runtime error
Runtime error
Uploading_code_part_to_show
Browse files- Code_part_to_show.txt +272 -0
Code_part_to_show.txt
ADDED
|
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
crop = pd.read_csv("Crop_recommendation.csv")
|
| 5 |
+
crop.head()
|
| 6 |
+
|
| 7 |
+
crop.info()
|
| 8 |
+
|
| 9 |
+
# to check null value is present or not
|
| 10 |
+
crop.isnull().sum()
|
| 11 |
+
|
| 12 |
+
# to check duplicate value is present or not
|
| 13 |
+
crop.duplicated().sum()
|
| 14 |
+
|
| 15 |
+
# describe all the mathematical info of only numerical data
|
| 16 |
+
# 25 % === percentile
|
| 17 |
+
crop.describe()
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
#Exploring Data correlation
|
| 22 |
+
# corr = crop.corr()
|
| 23 |
+
# corr
|
| 24 |
+
# Select only numeric columns for correlation computation
|
| 25 |
+
numeric_columns = crop.select_dtypes(include=['number'])
|
| 26 |
+
# Compute the correlation matrix
|
| 27 |
+
corr = numeric_columns.corr()
|
| 28 |
+
corr
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
import seaborn as sns
|
| 34 |
+
sns.heatmap(corr , annot = True , cmap = 'coolwarm')
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
crop['label'].value_counts()
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
import matplotlib.pyplot as plt
|
| 44 |
+
sns.distplot(crop['N'])
|
| 45 |
+
plt.show()
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
#Encoding
|
| 52 |
+
crop_dict = {
|
| 53 |
+
'rice': 1,
|
| 54 |
+
'maize': 2,
|
| 55 |
+
'jute': 3,
|
| 56 |
+
'cotton': 4,
|
| 57 |
+
'coconut': 5,
|
| 58 |
+
'papaya': 6,
|
| 59 |
+
'orange': 7,
|
| 60 |
+
'apple': 8,
|
| 61 |
+
'muskmelon': 9,
|
| 62 |
+
'watermelon': 10,
|
| 63 |
+
'grapes': 11,
|
| 64 |
+
'mango': 12,
|
| 65 |
+
'banana': 13,
|
| 66 |
+
'pomegranate': 14,
|
| 67 |
+
'lentil': 15,
|
| 68 |
+
'blackgram': 16,
|
| 69 |
+
'mungbean': 17,
|
| 70 |
+
'mothbeans': 18,
|
| 71 |
+
'pigeonpeas': 19,
|
| 72 |
+
'kidneybeans': 20,
|
| 73 |
+
'chickpea': 21,
|
| 74 |
+
'coffee': 22
|
| 75 |
+
}
|
| 76 |
+
crop['crop_num'] = crop['label'].map(crop_dict) # 'crop_num' kuch v name de sakte
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
crop['crop_num'].value_counts()
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
crop.drop('label' , axis = 1 , inplace = True) # no need to do this
|
| 88 |
+
crop.head(500)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
x = crop.drop('crop_num' , axis = 1)
|
| 95 |
+
y = crop['crop_num']
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
# Train Test Split
|
| 100 |
+
from sklearn.model_selection import train_test_split
|
| 101 |
+
x_train , x_test , y_train , y_test = train_test_split(x , y , test_size = 0.2 , random_state = 42)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
x_train.shape
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
x_test.shape
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
# Scale the features using MinMaxScaler
|
| 114 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 115 |
+
ms = MinMaxScaler()
|
| 116 |
+
|
| 117 |
+
# ms.fit(x_train)
|
| 118 |
+
x_train = ms.fit_transform(x_train)
|
| 119 |
+
x_test = ms.transform(x_test)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
# Standardization
|
| 128 |
+
|
| 129 |
+
from sklearn.preprocessing import StandardScaler
|
| 130 |
+
sc = StandardScaler()
|
| 131 |
+
|
| 132 |
+
# sc.fit(x_train)
|
| 133 |
+
|
| 134 |
+
x_train = sc.fit_transform(x_train)
|
| 135 |
+
x_test = sc.transform(x_test)
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
# Training Models
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
from sklearn.linear_model import LogisticRegression
|
| 147 |
+
from sklearn.naive_bayes import GaussianNB
|
| 148 |
+
from sklearn.svm import SVC
|
| 149 |
+
from sklearn.neighbors import KNeighborsClassifier
|
| 150 |
+
from sklearn.tree import DecisionTreeClassifier
|
| 151 |
+
from sklearn.tree import ExtraTreeClassifier
|
| 152 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 153 |
+
from sklearn.ensemble import BaggingClassifier
|
| 154 |
+
from sklearn.ensemble import GradientBoostingClassifier
|
| 155 |
+
from sklearn.ensemble import AdaBoostClassifier
|
| 156 |
+
from sklearn.metrics import accuracy_score
|
| 157 |
+
|
| 158 |
+
# create instances of all models
|
| 159 |
+
models = {
|
| 160 |
+
'Logistic Regression': LogisticRegression(),
|
| 161 |
+
'Support Vector Machine': SVC(),
|
| 162 |
+
'K-Nearest Neighbors': KNeighborsClassifier(),
|
| 163 |
+
'Decision Tree': DecisionTreeClassifier(),
|
| 164 |
+
'Bagging': BaggingClassifier(),
|
| 165 |
+
'AdaBoost': AdaBoostClassifier(),
|
| 166 |
+
'Gradient Boosting': GradientBoostingClassifier(),
|
| 167 |
+
'Extra Trees': ExtraTreeClassifier(),
|
| 168 |
+
'Naive Bayes': GaussianNB(),
|
| 169 |
+
'Random Forest': RandomForestClassifier()
|
| 170 |
+
}
|
| 171 |
+
|
| 172 |
+
# md = model
|
| 173 |
+
for name, md in models.items():
|
| 174 |
+
md.fit(x_train,y_train)
|
| 175 |
+
ypred = md.predict(x_test)
|
| 176 |
+
|
| 177 |
+
print(f"{name} with accuracy : {accuracy_score(y_test,ypred)}")
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
rfc = RandomForestClassifier()
|
| 189 |
+
rfc.fit(x_train,y_train)
|
| 190 |
+
ypred = rfc.predict(x_test)
|
| 191 |
+
accuracy_score(y_test,ypred)
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
# Predictive System
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def recommendation(N,P,k,temperature,humidity,ph,rainfal):
|
| 202 |
+
features = np.array([[N,P,k,temperature,humidity,ph,rainfal]])
|
| 203 |
+
transformed_features = ms.transform(features)
|
| 204 |
+
transformed_features = sc.transform(transformed_features)
|
| 205 |
+
prediction = rfc.predict(transformed_features).reshape(1,-1) # .reshape(1,-1) karne se single row ka o/p dega
|
| 206 |
+
|
| 207 |
+
return prediction[0] # returns {1,2,3,....,22}
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
#The .reshape(1, -1) part reshapes the prediction array into a 2-dimensional array with 1 row and as many columns as necessary to fit the data
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
# N = 40
|
| 221 |
+
# P = 50
|
| 222 |
+
# k = 50
|
| 223 |
+
# temperature = 40.0
|
| 224 |
+
# humidity = 20.0
|
| 225 |
+
# ph = 100.0
|
| 226 |
+
# rainfall = 100.0
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
# N = 30
|
| 230 |
+
# P = 10
|
| 231 |
+
# k = 100
|
| 232 |
+
# temperature = 100.0
|
| 233 |
+
# humidity = 210.0
|
| 234 |
+
# ph = 100.0
|
| 235 |
+
# rainfall = 23.0
|
| 236 |
+
|
| 237 |
+
N = 30
|
| 238 |
+
P = 20
|
| 239 |
+
k = 150
|
| 240 |
+
temperature = 23 # Best for apple
|
| 241 |
+
humidity = 60
|
| 242 |
+
ph = 5.5
|
| 243 |
+
rainfall = 900
|
| 244 |
+
|
| 245 |
+
predict = recommendation(N,P,k,temperature,humidity,ph,rainfall)
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
crop_dict = {1: "Rice", 2: "Maize", 3: "Jute", 4: "Cotton", 5: "Coconut", 6: "Papaya", 7: "Orange",
|
| 249 |
+
8: "Apple", 9: "Muskmelon", 10: "Watermelon", 11: "Grapes", 12: "Mango", 13: "Banana",
|
| 250 |
+
14: "Pomegranate", 15: "Lentil", 16: "Blackgram", 17: "Mungbean", 18: "Mothbeans",
|
| 251 |
+
19: "Pigeonpeas", 20: "Kidneybeans", 21: "Chickpea", 22: "Coffee"}
|
| 252 |
+
|
| 253 |
+
if predict[0] in crop_dict:
|
| 254 |
+
crop = crop_dict[predict[0]]
|
| 255 |
+
print("{} is a best crop to be cultivated ".format(crop))
|
| 256 |
+
else:
|
| 257 |
+
print("Sorry are not able to recommend a proper crop for this environment")
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
import pickle
|
| 266 |
+
pickle.dump(rfc , open('model.pkl' , 'wb')) # wb = write binary
|
| 267 |
+
# now 'model.pkl' is our model which can be used anywhere
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
|