rajeshuriti commited on
Commit
2f2ce5c
·
1 Parent(s): cf4a11d

Created QandA AI app

Browse files
Files changed (2) hide show
  1. app.py +30 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Part 1: Load the model ONCE
5
+ print("Loading the MobileBERT model...")
6
+ info_extractor = pipeline("question-answering", model="csarron/mobilebert-uncased-squad-v2")
7
+ print("Model loaded successfully!")
8
+
9
+ # Part 2: Create the function that the UI will call
10
+ # This function takes the document and question from the UI,
11
+ # gets the answer from the model, and returns it.
12
+ def extract_information(context, question):
13
+ print(f"Extracting answer for question: '{question}'")
14
+ result = info_extractor(question=question, context=context)
15
+ return result['answer']
16
+
17
+ # Part 3: Build and launch the Gradio Interface
18
+ print("Launching Gradio interface...")
19
+ iface = gr.Interface(
20
+ fn=extract_information,
21
+ inputs=[
22
+ gr.Textbox(lines=7, label="Document", placeholder="Paste the document or text you want to ask questions about..."),
23
+ gr.Textbox(label="Question", placeholder="What specific detail are you looking for?")
24
+ ],
25
+ outputs=gr.Textbox(label="Answer"),
26
+ title="💡 Efficient Information Extractor",
27
+ description="Ask a question about the document below to pull out specific details using a MobileBERT model."
28
+ )
29
+
30
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio
2
+ transformers
3
+ torch