Spaces:
Sleeping
Sleeping
| from pydantic import BaseModel | |
| from typing import List, Dict | |
| # Pydantic models for request validation | |
| class CreateEmbeddingRequest(BaseModel): | |
| query: str | |
| target_column: str = "product_type" | |
| output_column: str = "embedding" | |
| model: str = "text-embedding-3-small" | |
| batch_size: int = 10 | |
| max_concurrent_requests: int = 10 | |
| dataset_name: str = "re-mind/product_type_embedding" | |
| class ReadEmbeddingRequest(BaseModel): | |
| dataset_name: str | |
| # class UpdateEmbeddingRequest(BaseModel): | |
| # updates: Dict[str, List] # Column name -> List of values | |
| # target_column: str = "product_type" | |
| # output_column: str = "embedding" | |
| # model: str = "text-embedding-3-small" | |
| # batch_size: int = 10 | |
| # max_concurrent_requests: int = 10 | |
| # dataset_name: str = "re-mind/product_type_embedding" | |
| class UpdateEmbeddingRequest(BaseModel): | |
| dataset_name: str = "re-mind/product_type_embedding" | |
| updates: Dict[ | |
| str, List | |
| ] # Dictionary of column names and their corresponding values | |
| target_column: str = ( | |
| "product_type" # Column in the new data to generate embeddings for | |
| ) | |
| output_column: str = "embedding" # Column to store the generated embeddings | |
| class DeleteEmbeddingRequest(BaseModel): | |
| dataset_name: str | |
| # Request model for the /embed endpoint | |
| class EmbedRequest(BaseModel): | |
| texts: List[str] # List of strings to generate embeddings for | |
| output_column: str = ( | |
| "embedding" # Column to store embeddings (default: "embeddings") | |
| ) | |
| class SearchEmbeddingRequest(BaseModel): | |
| texts: List[str] # List of texts to search for | |
| target_column: str # Column to return in the results | |
| embedding_column: str # Column containing the embeddings to search against | |
| num_results: int # Number of results to return | |
| dataset_name: str # Name of the dataset to search in | |