Spaces:
Sleeping
Sleeping
amaye15
commited on
Commit
·
2cb9dec
1
Parent(s):
fd8f07a
Intial Deployment
Browse files- .gitignore +2 -0
- Dockerfile +51 -0
- README.md +3 -0
- docker-compose.yml +43 -0
- requirements.txt +8 -0
- src/api/database.py +596 -0
- src/api/exceptions.py +40 -0
- src/api/models/embedding_models.py +22 -0
- src/api/services/embedding_service.py +62 -0
- src/api/services/huggingface_service.py +69 -0
- src/main.py +177 -0
.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*pycache*
|
| 2 |
+
*.env*
|
Dockerfile
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Stage 1: Build stage
|
| 2 |
+
FROM python:3.12-slim as builder
|
| 3 |
+
|
| 4 |
+
# Set environment variables
|
| 5 |
+
ENV PYTHONDONTWRITEBYTECODE=1
|
| 6 |
+
ENV PYTHONUNBUFFERED=1
|
| 7 |
+
|
| 8 |
+
# Create a non-root user
|
| 9 |
+
RUN useradd -m -u 1000 user
|
| 10 |
+
|
| 11 |
+
# Set the working directory
|
| 12 |
+
WORKDIR /app
|
| 13 |
+
|
| 14 |
+
# Copy only the requirements file first to leverage Docker cache
|
| 15 |
+
COPY --chown=user ./requirements.txt /app/requirements.txt
|
| 16 |
+
|
| 17 |
+
# Install dependencies in a virtual environment
|
| 18 |
+
RUN python -m venv /opt/venv
|
| 19 |
+
ENV PATH="/opt/venv/bin:$PATH"
|
| 20 |
+
RUN pip install --no-cache-dir --upgrade pip && \
|
| 21 |
+
pip install --no-cache-dir -r requirements.txt
|
| 22 |
+
|
| 23 |
+
# Copy the rest of the application code
|
| 24 |
+
COPY --chown=user . /app
|
| 25 |
+
|
| 26 |
+
# Stage 2: Runtime stage
|
| 27 |
+
FROM python:3.12-slim
|
| 28 |
+
|
| 29 |
+
# Create a non-root user
|
| 30 |
+
RUN useradd -m -u 1000 user
|
| 31 |
+
USER user
|
| 32 |
+
|
| 33 |
+
# Copy the virtual environment from the builder stage
|
| 34 |
+
COPY --from=builder /opt/venv /opt/venv
|
| 35 |
+
ENV PATH="/opt/venv/bin:$PATH"
|
| 36 |
+
|
| 37 |
+
# Set the working directory
|
| 38 |
+
WORKDIR /app
|
| 39 |
+
|
| 40 |
+
# Copy only the necessary files from the builder stage
|
| 41 |
+
COPY --from=builder --chown=user /app /app
|
| 42 |
+
|
| 43 |
+
# Expose the port the app runs on
|
| 44 |
+
EXPOSE 7860
|
| 45 |
+
|
| 46 |
+
# Health check to ensure the application is running
|
| 47 |
+
HEALTHCHECK --interval=30s --timeout=30s --start-period=5s --retries=3 \
|
| 48 |
+
CMD curl -f http://localhost:7860/health || exit 1
|
| 49 |
+
|
| 50 |
+
# Command to run the application with hot reloading
|
| 51 |
+
CMD ["uvicorn", "src.main:app", "--host", "0.0.0.0", "--port", "7860", "--reload"]
|
README.md
CHANGED
|
@@ -6,6 +6,9 @@ colorTo: gray
|
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
license: mit
|
|
|
|
|
|
|
|
|
|
| 9 |
---
|
| 10 |
|
| 11 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
license: mit
|
| 9 |
+
python_version: 3.12
|
| 10 |
+
app_port: 7860
|
| 11 |
+
app_file: src/main.py
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
docker-compose.yml
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version: "3.9"
|
| 2 |
+
|
| 3 |
+
services:
|
| 4 |
+
app:
|
| 5 |
+
build:
|
| 6 |
+
context: .
|
| 7 |
+
dockerfile: Dockerfile
|
| 8 |
+
container_name: similarity-search-app
|
| 9 |
+
ports:
|
| 10 |
+
- "7860:7860"
|
| 11 |
+
volumes:
|
| 12 |
+
- ./src:/app/src # Mount the local src directory for hot reloading
|
| 13 |
+
environment:
|
| 14 |
+
- PYTHONUNBUFFERED=1
|
| 15 |
+
restart: unless-stopped
|
| 16 |
+
healthcheck:
|
| 17 |
+
test: ["CMD", "curl", "-f", "http://localhost:7860/health"]
|
| 18 |
+
interval: 30s
|
| 19 |
+
timeout: 10s
|
| 20 |
+
retries: 3
|
| 21 |
+
# depends_on:
|
| 22 |
+
# - db # If you have a database service, add it here
|
| 23 |
+
|
| 24 |
+
# # Example database service (optional)
|
| 25 |
+
# db:
|
| 26 |
+
# image: postgres:latest
|
| 27 |
+
# container_name: similarity-search-db
|
| 28 |
+
# environment:
|
| 29 |
+
# POSTGRES_USER: user
|
| 30 |
+
# POSTGRES_PASSWORD: password
|
| 31 |
+
# POSTGRES_DB: mydatabase
|
| 32 |
+
# ports:
|
| 33 |
+
# - "5432:5432"
|
| 34 |
+
# volumes:
|
| 35 |
+
# - postgres_data:/var/lib/postgresql/data
|
| 36 |
+
# healthcheck:
|
| 37 |
+
# test: ["CMD-SHELL", "pg_isready -U user -d mydatabase"]
|
| 38 |
+
# interval: 5s
|
| 39 |
+
# timeout: 5s
|
| 40 |
+
# retries: 5
|
| 41 |
+
|
| 42 |
+
# volumes:
|
| 43 |
+
# postgres_data:
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pg8000
|
| 2 |
+
pydantic
|
| 3 |
+
pydantic-settings
|
| 4 |
+
uvicorn
|
| 5 |
+
fastapi
|
| 6 |
+
openai
|
| 7 |
+
pandas
|
| 8 |
+
datasets
|
src/api/database.py
ADDED
|
@@ -0,0 +1,596 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# import logging
|
| 2 |
+
# from typing import Dict, List, Optional, AsyncGenerator
|
| 3 |
+
# from pydantic import BaseSettings, PostgresDsn
|
| 4 |
+
# import pg8000
|
| 5 |
+
# from pg8000 import Connection, Cursor
|
| 6 |
+
# from pg8000.exceptions import DatabaseError
|
| 7 |
+
# import asyncio
|
| 8 |
+
# from contextlib import asynccontextmanager
|
| 9 |
+
# from dataclasses import dataclass
|
| 10 |
+
# from threading import Lock
|
| 11 |
+
|
| 12 |
+
# # Set up structured logging
|
| 13 |
+
# logging.basicConfig(
|
| 14 |
+
# level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
| 15 |
+
# )
|
| 16 |
+
# logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# class DatabaseSettings(BaseSettings):
|
| 20 |
+
# db_url: PostgresDsn
|
| 21 |
+
# pool_size: int = 5
|
| 22 |
+
|
| 23 |
+
# class Config:
|
| 24 |
+
# env_file = ".env"
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# @dataclass
|
| 28 |
+
# class DatabaseConfig:
|
| 29 |
+
# username: str
|
| 30 |
+
# password: str
|
| 31 |
+
# hostname: str
|
| 32 |
+
# port: int
|
| 33 |
+
# database: str
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# class DatabaseError(Exception):
|
| 37 |
+
# """Custom exception for database errors."""
|
| 38 |
+
|
| 39 |
+
# pass
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# class Database:
|
| 43 |
+
# def __init__(self, db_url: str, pool_size: int):
|
| 44 |
+
# self.db_url = db_url
|
| 45 |
+
# self.pool_size = pool_size
|
| 46 |
+
# self.pool: List[Connection] = []
|
| 47 |
+
# self.lock = Lock()
|
| 48 |
+
# self.config = self._parse_db_url()
|
| 49 |
+
|
| 50 |
+
# def _parse_db_url(self) -> DatabaseConfig:
|
| 51 |
+
# """Parse the database URL into components."""
|
| 52 |
+
# result = urlparse(self.db_url)
|
| 53 |
+
# return DatabaseConfig(
|
| 54 |
+
# username=result.username,
|
| 55 |
+
# password=result.password,
|
| 56 |
+
# hostname=result.hostname,
|
| 57 |
+
# port=result.port or 5432,
|
| 58 |
+
# database=result.path.lstrip("/"),
|
| 59 |
+
# )
|
| 60 |
+
|
| 61 |
+
# async def connect(self) -> None:
|
| 62 |
+
# """Create a connection pool."""
|
| 63 |
+
# try:
|
| 64 |
+
# for _ in range(self.pool_size):
|
| 65 |
+
# conn = await self._create_connection()
|
| 66 |
+
# self.pool.append(conn)
|
| 67 |
+
# logger.info(
|
| 68 |
+
# f"Database connection pool created with {self.pool_size} connections."
|
| 69 |
+
# )
|
| 70 |
+
# except DatabaseError as e:
|
| 71 |
+
# logger.error(f"Failed to create database connection pool: {e}")
|
| 72 |
+
# raise
|
| 73 |
+
|
| 74 |
+
# async def _create_connection(self) -> Connection:
|
| 75 |
+
# """Create a single database connection."""
|
| 76 |
+
# try:
|
| 77 |
+
# conn = pg8000.connect(
|
| 78 |
+
# user=self.config.username,
|
| 79 |
+
# password=self.config.password,
|
| 80 |
+
# host=self.config.hostname,
|
| 81 |
+
# port=self.config.port,
|
| 82 |
+
# database=self.config.database,
|
| 83 |
+
# )
|
| 84 |
+
# return conn
|
| 85 |
+
# except DatabaseError as e:
|
| 86 |
+
# logger.error(f"Failed to create database connection: {e}")
|
| 87 |
+
# raise DatabaseError("Failed to create database connection.")
|
| 88 |
+
|
| 89 |
+
# async def disconnect(self) -> None:
|
| 90 |
+
# """Close all connections in the pool."""
|
| 91 |
+
# with self.lock:
|
| 92 |
+
# for conn in self.pool:
|
| 93 |
+
# conn.close()
|
| 94 |
+
# self.pool.clear()
|
| 95 |
+
# logger.info("Database connection pool closed.")
|
| 96 |
+
|
| 97 |
+
# @asynccontextmanager
|
| 98 |
+
# async def get_connection(self) -> AsyncGenerator[Connection, None]:
|
| 99 |
+
# """Acquire a connection from the pool."""
|
| 100 |
+
# with self.lock:
|
| 101 |
+
# if not self.pool:
|
| 102 |
+
# raise DatabaseError("Database connection pool is empty.")
|
| 103 |
+
# conn = self.pool.pop()
|
| 104 |
+
# try:
|
| 105 |
+
# yield conn
|
| 106 |
+
# finally:
|
| 107 |
+
# with self.lock:
|
| 108 |
+
# self.pool.append(conn)
|
| 109 |
+
|
| 110 |
+
# async def fetch(self, query: str, *args) -> List[Dict]:
|
| 111 |
+
# """
|
| 112 |
+
# Execute a SELECT query and return the results as a list of dictionaries.
|
| 113 |
+
|
| 114 |
+
# Args:
|
| 115 |
+
# query (str): The SQL query to execute.
|
| 116 |
+
# *args: Query parameters.
|
| 117 |
+
|
| 118 |
+
# Returns:
|
| 119 |
+
# List[Dict]: A list of dictionaries where keys are column names and values are column values.
|
| 120 |
+
# """
|
| 121 |
+
# try:
|
| 122 |
+
# async with self.get_connection() as conn:
|
| 123 |
+
# cursor: Cursor = conn.cursor()
|
| 124 |
+
# cursor.execute(query, args)
|
| 125 |
+
# rows = cursor.fetchall()
|
| 126 |
+
# columns = [desc[0] for desc in cursor.description]
|
| 127 |
+
# return [dict(zip(columns, row)) for row in rows]
|
| 128 |
+
# except DatabaseError as e:
|
| 129 |
+
# logger.error(f"Error executing query: {query}. Error: {e}")
|
| 130 |
+
# raise DatabaseError(f"Failed to execute query: {query}")
|
| 131 |
+
|
| 132 |
+
# async def execute(self, query: str, *args) -> None:
|
| 133 |
+
# """
|
| 134 |
+
# Execute an INSERT, UPDATE, or DELETE query.
|
| 135 |
+
|
| 136 |
+
# Args:
|
| 137 |
+
# query (str): The SQL query to execute.
|
| 138 |
+
# *args: Query parameters.
|
| 139 |
+
# """
|
| 140 |
+
# try:
|
| 141 |
+
# async with self.get_connection() as conn:
|
| 142 |
+
# cursor: Cursor = conn.cursor()
|
| 143 |
+
# cursor.execute(query, args)
|
| 144 |
+
# conn.commit()
|
| 145 |
+
# except DatabaseError as e:
|
| 146 |
+
# logger.error(f"Error executing query: {query}. Error: {e}")
|
| 147 |
+
# raise DatabaseError(f"Failed to execute query: {query}")
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
# # Dependency to get the database instance
|
| 151 |
+
# async def get_db() -> AsyncGenerator[Database, None]:
|
| 152 |
+
# settings = DatabaseSettings()
|
| 153 |
+
# db = Database(db_url=settings.db_url, pool_size=settings.pool_size)
|
| 154 |
+
# await db.connect()
|
| 155 |
+
# try:
|
| 156 |
+
# yield db
|
| 157 |
+
# finally:
|
| 158 |
+
# await db.disconnect()
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
# # Example usage
|
| 162 |
+
# if __name__ == "__main__":
|
| 163 |
+
|
| 164 |
+
# async def main():
|
| 165 |
+
# settings = DatabaseSettings()
|
| 166 |
+
# db = Database(db_url=settings.db_url, pool_size=settings.pool_size)
|
| 167 |
+
# await db.connect()
|
| 168 |
+
|
| 169 |
+
# try:
|
| 170 |
+
# # Example query
|
| 171 |
+
# query = """
|
| 172 |
+
# SELECT
|
| 173 |
+
# ppt.type AS product_type,
|
| 174 |
+
# pc.name AS product_category
|
| 175 |
+
# FROM
|
| 176 |
+
# product_producttype ppt
|
| 177 |
+
# INNER JOIN
|
| 178 |
+
# product_category pc
|
| 179 |
+
# ON
|
| 180 |
+
# ppt.category_id = pc.id
|
| 181 |
+
# """
|
| 182 |
+
# result = await db.fetch(query)
|
| 183 |
+
# print(result)
|
| 184 |
+
# finally:
|
| 185 |
+
# await db.disconnect()
|
| 186 |
+
|
| 187 |
+
# asyncio.run(main())
|
| 188 |
+
|
| 189 |
+
# import logging
|
| 190 |
+
# from urllib.parse import urlparse
|
| 191 |
+
# from typing import Dict, List, Optional, AsyncGenerator
|
| 192 |
+
# from pydantic_settings import BaseSettings
|
| 193 |
+
# from pydantic import PostgresDsn
|
| 194 |
+
# import pg8000
|
| 195 |
+
# from pg8000 import Connection, Cursor
|
| 196 |
+
# from pg8000.exceptions import DatabaseError
|
| 197 |
+
# import asyncio
|
| 198 |
+
# from contextlib import asynccontextmanager
|
| 199 |
+
# from dataclasses import dataclass
|
| 200 |
+
# from threading import Lock
|
| 201 |
+
|
| 202 |
+
# # Set up structured logging
|
| 203 |
+
# logging.basicConfig(
|
| 204 |
+
# level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
| 205 |
+
# )
|
| 206 |
+
# logger = logging.getLogger(__name__)
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
# class DatabaseSettings(BaseSettings):
|
| 210 |
+
# db_url: PostgresDsn
|
| 211 |
+
# pool_size: int = 5
|
| 212 |
+
|
| 213 |
+
# class Config:
|
| 214 |
+
# env_file = ".env"
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
# @dataclass
|
| 218 |
+
# class DatabaseConfig:
|
| 219 |
+
# username: str
|
| 220 |
+
# password: str
|
| 221 |
+
# hostname: str
|
| 222 |
+
# port: int
|
| 223 |
+
# database: str
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
# class DatabaseError(Exception):
|
| 227 |
+
# """Custom exception for database errors."""
|
| 228 |
+
|
| 229 |
+
# pass
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
# class Database:
|
| 233 |
+
# def __init__(self, db_url: str, pool_size: int):
|
| 234 |
+
# self.db_url = db_url
|
| 235 |
+
# self.pool_size = pool_size
|
| 236 |
+
# self.pool: List[Connection] = []
|
| 237 |
+
# self.lock = Lock()
|
| 238 |
+
# self.config = self._parse_db_url()
|
| 239 |
+
|
| 240 |
+
# def _parse_db_url(self) -> DatabaseConfig:
|
| 241 |
+
# """Parse the database URL into components."""
|
| 242 |
+
# # Convert PostgresDsn to a string
|
| 243 |
+
# db_url_str = str(self.db_url)
|
| 244 |
+
# result = urlparse(db_url_str)
|
| 245 |
+
# return DatabaseConfig(
|
| 246 |
+
# username=result.username,
|
| 247 |
+
# password=result.password,
|
| 248 |
+
# hostname=result.hostname,
|
| 249 |
+
# port=result.port or 5432,
|
| 250 |
+
# database=result.path.lstrip("/"),
|
| 251 |
+
# )
|
| 252 |
+
|
| 253 |
+
# async def connect(self) -> None:
|
| 254 |
+
# """Create a connection pool."""
|
| 255 |
+
# try:
|
| 256 |
+
# for _ in range(self.pool_size):
|
| 257 |
+
# conn = await self._create_connection()
|
| 258 |
+
# self.pool.append(conn)
|
| 259 |
+
# logger.info(
|
| 260 |
+
# f"Database connection pool created with {self.pool_size} connections."
|
| 261 |
+
# )
|
| 262 |
+
# except DatabaseError as e:
|
| 263 |
+
# logger.error(f"Failed to create database connection pool: {e}")
|
| 264 |
+
# raise
|
| 265 |
+
|
| 266 |
+
# async def _create_connection(self) -> Connection:
|
| 267 |
+
# """Create a single database connection."""
|
| 268 |
+
# try:
|
| 269 |
+
# conn = pg8000.connect(
|
| 270 |
+
# user=self.config.username,
|
| 271 |
+
# password=self.config.password,
|
| 272 |
+
# host=self.config.hostname,
|
| 273 |
+
# port=self.config.port,
|
| 274 |
+
# database=self.config.database,
|
| 275 |
+
# )
|
| 276 |
+
# return conn
|
| 277 |
+
# except DatabaseError as e:
|
| 278 |
+
# logger.error(f"Failed to create database connection: {e}")
|
| 279 |
+
# raise DatabaseError("Failed to create database connection.")
|
| 280 |
+
|
| 281 |
+
# async def disconnect(self) -> None:
|
| 282 |
+
# """Close all connections in the pool."""
|
| 283 |
+
# with self.lock:
|
| 284 |
+
# for conn in self.pool:
|
| 285 |
+
# conn.close()
|
| 286 |
+
# self.pool.clear()
|
| 287 |
+
# logger.info("Database connection pool closed.")
|
| 288 |
+
|
| 289 |
+
# @asynccontextmanager
|
| 290 |
+
# async def get_connection(self) -> AsyncGenerator[Connection, None]:
|
| 291 |
+
# """Acquire a connection from the pool."""
|
| 292 |
+
# with self.lock:
|
| 293 |
+
# if not self.pool:
|
| 294 |
+
# raise DatabaseError("Database connection pool is empty.")
|
| 295 |
+
# conn = self.pool.pop()
|
| 296 |
+
# try:
|
| 297 |
+
# yield conn
|
| 298 |
+
# finally:
|
| 299 |
+
# with self.lock:
|
| 300 |
+
# self.pool.append(conn)
|
| 301 |
+
|
| 302 |
+
# async def fetch(self, query: str, *args) -> List[Dict]:
|
| 303 |
+
# """
|
| 304 |
+
# Execute a SELECT query and return the results as a list of dictionaries.
|
| 305 |
+
|
| 306 |
+
# Args:
|
| 307 |
+
# query (str): The SQL query to execute.
|
| 308 |
+
# *args: Query parameters.
|
| 309 |
+
|
| 310 |
+
# Returns:
|
| 311 |
+
# List[Dict]: A list of dictionaries where keys are column names and values are column values.
|
| 312 |
+
# """
|
| 313 |
+
# try:
|
| 314 |
+
# async with self.get_connection() as conn:
|
| 315 |
+
# cursor: Cursor = conn.cursor()
|
| 316 |
+
# cursor.execute(query, args)
|
| 317 |
+
# rows = cursor.fetchall()
|
| 318 |
+
# columns = [desc[0] for desc in cursor.description]
|
| 319 |
+
# return [dict(zip(columns, row)) for row in rows]
|
| 320 |
+
# except DatabaseError as e:
|
| 321 |
+
# logger.error(f"Error executing query: {query}. Error: {e}")
|
| 322 |
+
# raise DatabaseError(f"Failed to execute query: {query}")
|
| 323 |
+
|
| 324 |
+
# async def execute(self, query: str, *args) -> None:
|
| 325 |
+
# """
|
| 326 |
+
# Execute an INSERT, UPDATE, or DELETE query.
|
| 327 |
+
|
| 328 |
+
# Args:
|
| 329 |
+
# query (str): The SQL query to execute.
|
| 330 |
+
# *args: Query parameters.
|
| 331 |
+
# """
|
| 332 |
+
# try:
|
| 333 |
+
# async with self.get_connection() as conn:
|
| 334 |
+
# cursor: Cursor = conn.cursor()
|
| 335 |
+
# cursor.execute(query, args)
|
| 336 |
+
# conn.commit()
|
| 337 |
+
# except DatabaseError as e:
|
| 338 |
+
# logger.error(f"Error executing query: {query}. Error: {e}")
|
| 339 |
+
# raise DatabaseError(f"Failed to execute query: {query}")
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
# # Dependency to get the database instance
|
| 343 |
+
# async def get_db() -> AsyncGenerator[Database, None]:
|
| 344 |
+
# settings = DatabaseSettings()
|
| 345 |
+
# db = Database(db_url=settings.db_url, pool_size=settings.pool_size)
|
| 346 |
+
# await db.connect()
|
| 347 |
+
# try:
|
| 348 |
+
# yield db
|
| 349 |
+
# finally:
|
| 350 |
+
# await db.disconnect()
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
# # Example usage
|
| 354 |
+
# if __name__ == "__main__":
|
| 355 |
+
|
| 356 |
+
# async def main():
|
| 357 |
+
# settings = DatabaseSettings()
|
| 358 |
+
# db = Database(db_url=settings.db_url, pool_size=settings.pool_size)
|
| 359 |
+
# await db.connect()
|
| 360 |
+
|
| 361 |
+
# try:
|
| 362 |
+
# # Example query
|
| 363 |
+
# query = "SELECT * FROM your_table LIMIT 10"
|
| 364 |
+
# query = """
|
| 365 |
+
# SELECT
|
| 366 |
+
# ppt.type AS product_type,
|
| 367 |
+
# pc.name AS product_category
|
| 368 |
+
# FROM
|
| 369 |
+
# product_producttype ppt
|
| 370 |
+
# INNER JOIN
|
| 371 |
+
# product_category pc
|
| 372 |
+
# ON
|
| 373 |
+
# ppt.category_id = pc.id
|
| 374 |
+
# """
|
| 375 |
+
# result = await db.fetch(query)
|
| 376 |
+
# print(result)
|
| 377 |
+
# finally:
|
| 378 |
+
# await db.disconnect()
|
| 379 |
+
|
| 380 |
+
# asyncio.run(main())
|
| 381 |
+
|
| 382 |
+
import logging
|
| 383 |
+
from typing import AsyncGenerator, List, Optional, Dict
|
| 384 |
+
from pydantic_settings import BaseSettings
|
| 385 |
+
from pydantic import PostgresDsn
|
| 386 |
+
import pg8000
|
| 387 |
+
from pg8000 import Connection
|
| 388 |
+
from pg8000.exceptions import DatabaseError as Pg8000DatabaseError
|
| 389 |
+
import asyncio
|
| 390 |
+
from contextlib import asynccontextmanager
|
| 391 |
+
from threading import Lock
|
| 392 |
+
from urllib.parse import urlparse
|
| 393 |
+
|
| 394 |
+
# Set up structured logging
|
| 395 |
+
logging.basicConfig(
|
| 396 |
+
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
| 397 |
+
)
|
| 398 |
+
logger = logging.getLogger(__name__)
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
class DatabaseSettings(BaseSettings):
|
| 402 |
+
db_url: PostgresDsn
|
| 403 |
+
pool_size: int = 5 # Default pool size is 5
|
| 404 |
+
|
| 405 |
+
class Config:
|
| 406 |
+
env_file = ".env"
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
# Custom database errors
|
| 410 |
+
class DatabaseError(Exception):
|
| 411 |
+
"""Base exception for database errors."""
|
| 412 |
+
|
| 413 |
+
pass
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
class ConnectionError(DatabaseError):
|
| 417 |
+
"""Exception raised when a database connection fails."""
|
| 418 |
+
|
| 419 |
+
pass
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
class PoolExhaustedError(DatabaseError):
|
| 423 |
+
"""Exception raised when the connection pool is exhausted."""
|
| 424 |
+
|
| 425 |
+
pass
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
class QueryExecutionError(DatabaseError):
|
| 429 |
+
"""Exception raised when a query execution fails."""
|
| 430 |
+
|
| 431 |
+
pass
|
| 432 |
+
|
| 433 |
+
|
| 434 |
+
class HealthCheckError(DatabaseError):
|
| 435 |
+
"""Exception raised when a health check fails."""
|
| 436 |
+
|
| 437 |
+
pass
|
| 438 |
+
|
| 439 |
+
|
| 440 |
+
class Database:
|
| 441 |
+
def __init__(self, db_url: PostgresDsn, pool_size: int):
|
| 442 |
+
self.db_url = db_url
|
| 443 |
+
self.pool_size = pool_size
|
| 444 |
+
self.pool: List[Connection] = []
|
| 445 |
+
self.lock = Lock()
|
| 446 |
+
|
| 447 |
+
async def connect(self) -> None:
|
| 448 |
+
"""Create a connection pool."""
|
| 449 |
+
try:
|
| 450 |
+
# Convert PostgresDsn to a string
|
| 451 |
+
db_url_str = str(self.db_url)
|
| 452 |
+
result = urlparse(db_url_str)
|
| 453 |
+
for _ in range(self.pool_size):
|
| 454 |
+
conn = pg8000.connect(
|
| 455 |
+
user=result.username,
|
| 456 |
+
password=result.password,
|
| 457 |
+
host=result.hostname,
|
| 458 |
+
port=result.port or 5432,
|
| 459 |
+
database=result.path.lstrip("/"),
|
| 460 |
+
)
|
| 461 |
+
self.pool.append(conn)
|
| 462 |
+
logger.info(
|
| 463 |
+
f"Database connection pool created with {self.pool_size} connections."
|
| 464 |
+
)
|
| 465 |
+
except Pg8000DatabaseError as e:
|
| 466 |
+
logger.error(f"Failed to create database connection pool: {e}")
|
| 467 |
+
raise ConnectionError("Failed to create database connection pool.") from e
|
| 468 |
+
|
| 469 |
+
async def disconnect(self) -> None:
|
| 470 |
+
"""Close all connections in the pool."""
|
| 471 |
+
with self.lock:
|
| 472 |
+
for conn in self.pool:
|
| 473 |
+
conn.close()
|
| 474 |
+
self.pool.clear()
|
| 475 |
+
logger.info("Database connection pool closed.")
|
| 476 |
+
|
| 477 |
+
@asynccontextmanager
|
| 478 |
+
async def get_connection(self) -> AsyncGenerator[Connection, None]:
|
| 479 |
+
"""Acquire a connection from the pool."""
|
| 480 |
+
with self.lock:
|
| 481 |
+
if not self.pool:
|
| 482 |
+
logger.error("Connection pool is exhausted.")
|
| 483 |
+
raise PoolExhaustedError("No available connections in the pool.")
|
| 484 |
+
conn = self.pool.pop()
|
| 485 |
+
try:
|
| 486 |
+
yield conn
|
| 487 |
+
except Pg8000DatabaseError as e:
|
| 488 |
+
logger.error(f"Connection error: {e}")
|
| 489 |
+
raise ConnectionError("Failed to use database connection.") from e
|
| 490 |
+
finally:
|
| 491 |
+
with self.lock:
|
| 492 |
+
self.pool.append(conn)
|
| 493 |
+
|
| 494 |
+
async def fetch(self, query: str, *args) -> List[Dict]:
|
| 495 |
+
"""
|
| 496 |
+
Execute a SELECT query and return the results as a list of dictionaries.
|
| 497 |
+
|
| 498 |
+
Args:
|
| 499 |
+
query (str): The SQL query to execute.
|
| 500 |
+
*args: Query parameters.
|
| 501 |
+
|
| 502 |
+
Returns:
|
| 503 |
+
List[Dict]: A list of dictionaries where keys are column names and values are column values.
|
| 504 |
+
|
| 505 |
+
Raises:
|
| 506 |
+
QueryExecutionError: If the query execution fails.
|
| 507 |
+
"""
|
| 508 |
+
try:
|
| 509 |
+
async with self.get_connection() as conn:
|
| 510 |
+
cursor = conn.cursor()
|
| 511 |
+
cursor.execute(query, args)
|
| 512 |
+
rows = cursor.fetchall()
|
| 513 |
+
columns = [desc[0] for desc in cursor.description]
|
| 514 |
+
return [dict(zip(columns, row)) for row in rows]
|
| 515 |
+
except Pg8000DatabaseError as e:
|
| 516 |
+
logger.error(f"Query execution failed: {e}")
|
| 517 |
+
raise QueryExecutionError(f"Failed to execute query: {query}") from e
|
| 518 |
+
|
| 519 |
+
async def execute(self, query: str, *args) -> None:
|
| 520 |
+
"""
|
| 521 |
+
Execute an INSERT, UPDATE, or DELETE query.
|
| 522 |
+
|
| 523 |
+
Args:
|
| 524 |
+
query (str): The SQL query to execute.
|
| 525 |
+
*args: Query parameters.
|
| 526 |
+
|
| 527 |
+
Raises:
|
| 528 |
+
QueryExecutionError: If the query execution fails.
|
| 529 |
+
"""
|
| 530 |
+
try:
|
| 531 |
+
async with self.get_connection() as conn:
|
| 532 |
+
cursor = conn.cursor()
|
| 533 |
+
cursor.execute(query, args)
|
| 534 |
+
conn.commit()
|
| 535 |
+
except Pg8000DatabaseError as e:
|
| 536 |
+
logger.error(f"Query execution failed: {e}")
|
| 537 |
+
raise QueryExecutionError(f"Failed to execute query: {query}") from e
|
| 538 |
+
|
| 539 |
+
async def health_check(self) -> bool:
|
| 540 |
+
"""
|
| 541 |
+
Perform a health check by executing a simple query (e.g., SELECT 1).
|
| 542 |
+
|
| 543 |
+
Returns:
|
| 544 |
+
bool: True if the database is healthy, False otherwise.
|
| 545 |
+
|
| 546 |
+
Raises:
|
| 547 |
+
HealthCheckError: If the health check fails.
|
| 548 |
+
"""
|
| 549 |
+
try:
|
| 550 |
+
async with self.get_connection() as conn:
|
| 551 |
+
cursor = conn.cursor()
|
| 552 |
+
cursor.execute("SELECT 1")
|
| 553 |
+
result = cursor.fetchone()
|
| 554 |
+
cursor.close()
|
| 555 |
+
|
| 556 |
+
# Check if the result is as expected
|
| 557 |
+
if result and result[0] == 1:
|
| 558 |
+
logger.info("Database health check succeeded.")
|
| 559 |
+
return True
|
| 560 |
+
else:
|
| 561 |
+
logger.error("Database health check failed: Unexpected result.")
|
| 562 |
+
raise HealthCheckError("Unexpected result from health check query.")
|
| 563 |
+
except Pg8000DatabaseError as e:
|
| 564 |
+
logger.error(f"Health check failed: {e}")
|
| 565 |
+
raise HealthCheckError("Failed to perform health check.") from e
|
| 566 |
+
|
| 567 |
+
|
| 568 |
+
# Dependency to get the database instance
|
| 569 |
+
async def get_db() -> AsyncGenerator[Database, None]:
|
| 570 |
+
settings = DatabaseSettings()
|
| 571 |
+
db = Database(db_url=settings.db_url, pool_size=settings.pool_size)
|
| 572 |
+
await db.connect()
|
| 573 |
+
try:
|
| 574 |
+
yield db
|
| 575 |
+
finally:
|
| 576 |
+
await db.disconnect()
|
| 577 |
+
|
| 578 |
+
|
| 579 |
+
# Example usage
|
| 580 |
+
if __name__ == "__main__":
|
| 581 |
+
|
| 582 |
+
async def main():
|
| 583 |
+
settings = DatabaseSettings()
|
| 584 |
+
db = Database(db_url=settings.db_url, pool_size=settings.pool_size)
|
| 585 |
+
await db.connect()
|
| 586 |
+
|
| 587 |
+
try:
|
| 588 |
+
# Perform a health check
|
| 589 |
+
is_healthy = await db.health_check()
|
| 590 |
+
print(f"Database health check: {'Success' if is_healthy else 'Failure'}")
|
| 591 |
+
except HealthCheckError as e:
|
| 592 |
+
print(f"Health check failed: {e}")
|
| 593 |
+
finally:
|
| 594 |
+
await db.disconnect()
|
| 595 |
+
|
| 596 |
+
asyncio.run(main())
|
src/api/exceptions.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
class DatabaseError(Exception):
|
| 2 |
+
"""Base exception for database errors."""
|
| 3 |
+
|
| 4 |
+
pass
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class QueryExecutionError(DatabaseError):
|
| 8 |
+
"""Exception raised when a database query fails."""
|
| 9 |
+
|
| 10 |
+
pass
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class EmbeddingError(Exception):
|
| 14 |
+
"""Base exception for embedding-related errors."""
|
| 15 |
+
|
| 16 |
+
pass
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class OpenAIError(EmbeddingError):
|
| 20 |
+
"""Exception raised when OpenAI API fails."""
|
| 21 |
+
|
| 22 |
+
pass
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class HuggingFaceError(Exception):
|
| 26 |
+
"""Base exception for Hugging Face-related errors."""
|
| 27 |
+
|
| 28 |
+
pass
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class DatasetNotFoundError(HuggingFaceError):
|
| 32 |
+
"""Exception raised when a dataset is not found."""
|
| 33 |
+
|
| 34 |
+
pass
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class DatasetPushError(HuggingFaceError):
|
| 38 |
+
"""Exception raised when pushing a dataset to Hugging Face Hub fails."""
|
| 39 |
+
|
| 40 |
+
pass
|
src/api/models/embedding_models.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pydantic import BaseModel
|
| 2 |
+
from typing import List, Dict
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
# Pydantic models for request validation
|
| 6 |
+
class CreateEmbeddingRequest(BaseModel):
|
| 7 |
+
query: str
|
| 8 |
+
target_column: str = "product_type"
|
| 9 |
+
output_column: str = "embedding"
|
| 10 |
+
model: str = "text-embedding-3-small"
|
| 11 |
+
batch_size: int = 100
|
| 12 |
+
dataset_name: str = "re-mind/product_type_embedding"
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class UpdateEmbeddingRequest(BaseModel):
|
| 16 |
+
dataset_name: str
|
| 17 |
+
updates: Dict[str, List] # Column name -> List of values
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class DeleteEmbeddingRequest(BaseModel):
|
| 21 |
+
dataset_name: str
|
| 22 |
+
columns: List[str] # List of columns to delete
|
src/api/services/embedding_service.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from openai import AsyncOpenAI
|
| 2 |
+
import logging
|
| 3 |
+
from typing import List, Dict
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import asyncio
|
| 6 |
+
from src.api.exceptions import OpenAIError
|
| 7 |
+
|
| 8 |
+
# Set up structured logging
|
| 9 |
+
logging.basicConfig(
|
| 10 |
+
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
| 11 |
+
)
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class EmbeddingService:
|
| 16 |
+
def __init__(
|
| 17 |
+
self,
|
| 18 |
+
openai_api_key: str,
|
| 19 |
+
model: str = "text-embedding-3-small",
|
| 20 |
+
batch_size: int = 100,
|
| 21 |
+
):
|
| 22 |
+
self.client = AsyncOpenAI(api_key=openai_api_key)
|
| 23 |
+
self.model = model
|
| 24 |
+
self.batch_size = batch_size
|
| 25 |
+
|
| 26 |
+
async def get_embedding(self, text: str) -> List[float]:
|
| 27 |
+
"""Generate embeddings for the given text using OpenAI."""
|
| 28 |
+
text = text.replace("\n", " ")
|
| 29 |
+
try:
|
| 30 |
+
response = await self.client.embeddings.create(
|
| 31 |
+
input=[text], model=self.model
|
| 32 |
+
)
|
| 33 |
+
return response.data[0].embedding
|
| 34 |
+
except Exception as e:
|
| 35 |
+
logger.error(f"Failed to generate embedding: {e}")
|
| 36 |
+
raise OpenAIError(f"OpenAI API error: {e}")
|
| 37 |
+
|
| 38 |
+
async def create_embeddings(
|
| 39 |
+
self, df: pd.DataFrame, target_column: str, output_column: str
|
| 40 |
+
) -> pd.DataFrame:
|
| 41 |
+
"""Create embeddings for the target column in the dataset."""
|
| 42 |
+
logger.info("Generating embeddings...")
|
| 43 |
+
batches = [
|
| 44 |
+
df[i : i + self.batch_size] for i in range(0, len(df), self.batch_size)
|
| 45 |
+
]
|
| 46 |
+
processed_batches = await asyncio.gather(
|
| 47 |
+
*[
|
| 48 |
+
self._process_batch(batch, target_column, output_column)
|
| 49 |
+
for batch in batches
|
| 50 |
+
]
|
| 51 |
+
)
|
| 52 |
+
return pd.concat(processed_batches)
|
| 53 |
+
|
| 54 |
+
async def _process_batch(
|
| 55 |
+
self, df_batch: pd.DataFrame, target_column: str, output_column: str
|
| 56 |
+
) -> pd.DataFrame:
|
| 57 |
+
"""Process a batch of rows to generate embeddings."""
|
| 58 |
+
embeddings = await asyncio.gather(
|
| 59 |
+
*[self.get_embedding(row[target_column]) for _, row in df_batch.iterrows()]
|
| 60 |
+
)
|
| 61 |
+
df_batch[output_column] = embeddings
|
| 62 |
+
return df_batch
|
src/api/services/huggingface_service.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import Dataset, load_dataset
|
| 2 |
+
import logging
|
| 3 |
+
from typing import Optional, Dict, List
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from src.api.exceptions import DatasetNotFoundError, DatasetPushError
|
| 6 |
+
|
| 7 |
+
# Set up structured logging
|
| 8 |
+
logging.basicConfig(
|
| 9 |
+
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
| 10 |
+
)
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class HuggingFaceService:
|
| 15 |
+
async def push_to_hub(self, df: pd.DataFrame, dataset_name: str) -> None:
|
| 16 |
+
"""Push the dataset to Hugging Face Hub."""
|
| 17 |
+
try:
|
| 18 |
+
logger.info(f"Creating Hugging Face Dataset: {dataset_name}...")
|
| 19 |
+
ds = Dataset.from_pandas(df).remove_columns("__index_level_0__")
|
| 20 |
+
ds.push_to_hub(dataset_name)
|
| 21 |
+
logger.info(f"Dataset pushed to Hugging Face Hub: {dataset_name}")
|
| 22 |
+
except Exception as e:
|
| 23 |
+
logger.error(f"Failed to push dataset to Hugging Face Hub: {e}")
|
| 24 |
+
raise DatasetPushError(f"Failed to push dataset: {e}")
|
| 25 |
+
|
| 26 |
+
async def read_dataset(self, dataset_name: str) -> Optional[pd.DataFrame]:
|
| 27 |
+
"""Read a dataset from Hugging Face Hub."""
|
| 28 |
+
try:
|
| 29 |
+
logger.info(f"Loading dataset from Hugging Face Hub: {dataset_name}...")
|
| 30 |
+
ds = load_dataset(dataset_name)
|
| 31 |
+
df = ds["train"].to_pandas()
|
| 32 |
+
return df
|
| 33 |
+
except Exception as e:
|
| 34 |
+
logger.error(f"Failed to read dataset: {e}")
|
| 35 |
+
raise DatasetNotFoundError(f"Dataset not found: {e}")
|
| 36 |
+
|
| 37 |
+
async def update_dataset(
|
| 38 |
+
self, dataset_name: str, updates: Dict[str, List]
|
| 39 |
+
) -> Optional[pd.DataFrame]:
|
| 40 |
+
"""Update a dataset on Hugging Face Hub."""
|
| 41 |
+
try:
|
| 42 |
+
df = await self.read_dataset(dataset_name)
|
| 43 |
+
for column, values in updates.items():
|
| 44 |
+
if column in df.columns:
|
| 45 |
+
df[column] = values
|
| 46 |
+
else:
|
| 47 |
+
logger.warning(f"Column '{column}' not found in dataset.")
|
| 48 |
+
await self.push_to_hub(df, dataset_name)
|
| 49 |
+
return df
|
| 50 |
+
except Exception as e:
|
| 51 |
+
logger.error(f"Failed to update dataset: {e}")
|
| 52 |
+
raise DatasetPushError(f"Failed to update dataset: {e}")
|
| 53 |
+
|
| 54 |
+
async def delete_columns(
|
| 55 |
+
self, dataset_name: str, columns: List[str]
|
| 56 |
+
) -> Optional[pd.DataFrame]:
|
| 57 |
+
"""Delete columns from a dataset on Hugging Face Hub."""
|
| 58 |
+
try:
|
| 59 |
+
df = await self.read_dataset(dataset_name)
|
| 60 |
+
for column in columns:
|
| 61 |
+
if column in df.columns:
|
| 62 |
+
df.drop(column, axis=1, inplace=True)
|
| 63 |
+
else:
|
| 64 |
+
logger.warning(f"Column '{column}' not found in dataset.")
|
| 65 |
+
await self.push_to_hub(df, dataset_name)
|
| 66 |
+
return df
|
| 67 |
+
except Exception as e:
|
| 68 |
+
logger.error(f"Failed to delete columns: {e}")
|
| 69 |
+
raise DatasetPushError(f"Failed to delete columns: {e}")
|
src/main.py
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from fastapi import FastAPI, Depends, HTTPException
|
| 3 |
+
from fastapi.responses import JSONResponse, RedirectResponse
|
| 4 |
+
from pydantic import BaseModel
|
| 5 |
+
from typing import List, Dict
|
| 6 |
+
from src.api.models.embedding_models import (
|
| 7 |
+
CreateEmbeddingRequest,
|
| 8 |
+
UpdateEmbeddingRequest,
|
| 9 |
+
DeleteEmbeddingRequest,
|
| 10 |
+
)
|
| 11 |
+
from src.api.database import get_db, Database, QueryExecutionError, HealthCheckError
|
| 12 |
+
from src.api.services.embedding_service import EmbeddingService
|
| 13 |
+
from src.api.services.huggingface_service import HuggingFaceService
|
| 14 |
+
from src.api.exceptions import DatasetNotFoundError, DatasetPushError, OpenAIError
|
| 15 |
+
import pandas as pd
|
| 16 |
+
import logging
|
| 17 |
+
from dotenv import load_dotenv
|
| 18 |
+
|
| 19 |
+
# Load environment variables
|
| 20 |
+
load_dotenv()
|
| 21 |
+
|
| 22 |
+
# Set up structured logging
|
| 23 |
+
logging.basicConfig(
|
| 24 |
+
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
| 25 |
+
)
|
| 26 |
+
logger = logging.getLogger(__name__)
|
| 27 |
+
|
| 28 |
+
# Initialize FastAPI app
|
| 29 |
+
app = FastAPI(
|
| 30 |
+
title="Similarity Search API",
|
| 31 |
+
description="A FastAPI application for similarity search with PostgreSQL and OpenAI embeddings.",
|
| 32 |
+
version="1.0.0",
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# Root endpoint redirects to /docs
|
| 37 |
+
@app.get("/")
|
| 38 |
+
async def root():
|
| 39 |
+
return RedirectResponse(url="/docs")
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# Health check endpoint
|
| 43 |
+
@app.get("/health")
|
| 44 |
+
async def health_check(db: Database = Depends(get_db)):
|
| 45 |
+
try:
|
| 46 |
+
is_healthy = await db.health_check()
|
| 47 |
+
if not is_healthy:
|
| 48 |
+
raise HTTPException(status_code=500, detail="Database is unhealthy")
|
| 49 |
+
return {"status": "healthy"}
|
| 50 |
+
except HealthCheckError as e:
|
| 51 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
# Dependency to get EmbeddingService
|
| 55 |
+
def get_embedding_service() -> EmbeddingService:
|
| 56 |
+
return EmbeddingService(openai_api_key=os.getenv("OPENAI_API_KEY"))
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
# Dependency to get HuggingFaceService
|
| 60 |
+
def get_huggingface_service() -> HuggingFaceService:
|
| 61 |
+
return HuggingFaceService()
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# Endpoint to create embeddings
|
| 65 |
+
@app.post("/create_embedding")
|
| 66 |
+
async def create_embedding(
|
| 67 |
+
request: CreateEmbeddingRequest,
|
| 68 |
+
db: Database = Depends(get_db),
|
| 69 |
+
embedding_service: EmbeddingService = Depends(get_embedding_service),
|
| 70 |
+
huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
| 71 |
+
):
|
| 72 |
+
"""
|
| 73 |
+
Create embeddings for the target column in the dataset.
|
| 74 |
+
"""
|
| 75 |
+
try:
|
| 76 |
+
# Step 1: Query the database
|
| 77 |
+
logger.info("Fetching data from the database...")
|
| 78 |
+
result = await db.fetch(request.query)
|
| 79 |
+
df = pd.DataFrame(result)
|
| 80 |
+
|
| 81 |
+
# Step 2: Generate embeddings
|
| 82 |
+
df = await embedding_service.create_embeddings(
|
| 83 |
+
df, request.target_column, request.output_column
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# Step 3: Push to Hugging Face Hub
|
| 87 |
+
await huggingface_service.push_to_hub(df, request.dataset_name)
|
| 88 |
+
|
| 89 |
+
return JSONResponse(
|
| 90 |
+
content={
|
| 91 |
+
"message": "Embeddings created and pushed to Hugging Face Hub.",
|
| 92 |
+
"dataset_name": request.dataset_name,
|
| 93 |
+
"num_rows": len(df),
|
| 94 |
+
}
|
| 95 |
+
)
|
| 96 |
+
except QueryExecutionError as e:
|
| 97 |
+
logger.error(f"Database query failed: {e}")
|
| 98 |
+
raise HTTPException(status_code=500, detail=f"Database query failed: {e}")
|
| 99 |
+
except OpenAIError as e:
|
| 100 |
+
logger.error(f"OpenAI API error: {e}")
|
| 101 |
+
raise HTTPException(status_code=500, detail=f"OpenAI API error: {e}")
|
| 102 |
+
except DatasetPushError as e:
|
| 103 |
+
logger.error(f"Failed to push dataset: {e}")
|
| 104 |
+
raise HTTPException(status_code=500, detail=f"Failed to push dataset: {e}")
|
| 105 |
+
except Exception as e:
|
| 106 |
+
logger.error(f"An error occurred: {e}")
|
| 107 |
+
raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
# Endpoint to read embeddings
|
| 111 |
+
@app.get("/read_embeddings/{dataset_name}")
|
| 112 |
+
async def read_embeddings(
|
| 113 |
+
dataset_name: str,
|
| 114 |
+
huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
| 115 |
+
):
|
| 116 |
+
"""
|
| 117 |
+
Read embeddings from a Hugging Face dataset.
|
| 118 |
+
"""
|
| 119 |
+
try:
|
| 120 |
+
df = await huggingface_service.read_dataset(dataset_name)
|
| 121 |
+
return df.to_dict(orient="records")
|
| 122 |
+
except DatasetNotFoundError as e:
|
| 123 |
+
logger.error(f"Dataset not found: {e}")
|
| 124 |
+
raise HTTPException(status_code=404, detail=f"Dataset not found: {e}")
|
| 125 |
+
except Exception as e:
|
| 126 |
+
logger.error(f"An error occurred: {e}")
|
| 127 |
+
raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
# Endpoint to update embeddings
|
| 131 |
+
@app.post("/update_embeddings")
|
| 132 |
+
async def update_embeddings(
|
| 133 |
+
request: UpdateEmbeddingRequest,
|
| 134 |
+
huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
| 135 |
+
):
|
| 136 |
+
"""
|
| 137 |
+
Update embeddings in a Hugging Face dataset.
|
| 138 |
+
"""
|
| 139 |
+
try:
|
| 140 |
+
df = await huggingface_service.update_dataset(
|
| 141 |
+
request.dataset_name, request.updates
|
| 142 |
+
)
|
| 143 |
+
return {
|
| 144 |
+
"message": "Embeddings updated successfully.",
|
| 145 |
+
"dataset_name": request.dataset_name,
|
| 146 |
+
}
|
| 147 |
+
except DatasetPushError as e:
|
| 148 |
+
logger.error(f"Failed to update dataset: {e}")
|
| 149 |
+
raise HTTPException(status_code=500, detail=f"Failed to update dataset: {e}")
|
| 150 |
+
except Exception as e:
|
| 151 |
+
logger.error(f"An error occurred: {e}")
|
| 152 |
+
raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
# Endpoint to delete embeddings
|
| 156 |
+
@app.post("/delete_embeddings")
|
| 157 |
+
async def delete_embeddings(
|
| 158 |
+
request: DeleteEmbeddingRequest,
|
| 159 |
+
huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
| 160 |
+
):
|
| 161 |
+
"""
|
| 162 |
+
Delete embeddings from a Hugging Face dataset.
|
| 163 |
+
"""
|
| 164 |
+
try:
|
| 165 |
+
df = await huggingface_service.delete_columns(
|
| 166 |
+
request.dataset_name, request.columns
|
| 167 |
+
)
|
| 168 |
+
return {
|
| 169 |
+
"message": "Embeddings deleted successfully.",
|
| 170 |
+
"dataset_name": request.dataset_name,
|
| 171 |
+
}
|
| 172 |
+
except DatasetPushError as e:
|
| 173 |
+
logger.error(f"Failed to delete columns: {e}")
|
| 174 |
+
raise HTTPException(status_code=500, detail=f"Failed to delete columns: {e}")
|
| 175 |
+
except Exception as e:
|
| 176 |
+
logger.error(f"An error occurred: {e}")
|
| 177 |
+
raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|