Spaces:
Sleeping
Sleeping
amaye15
commited on
Commit
·
6f4f307
1
Parent(s):
fdc226e
Feat - Improved - Update Endpoint
Browse files- docker-compose.yml +0 -2
- src/api/dependency.py +13 -0
- src/api/models/embedding_models.py +29 -2
- src/api/services/embedding_service.py +0 -143
- src/api/services/huggingface_service.py +62 -11
- src/main.py +35 -21
docker-compose.yml
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
-
version: "3.9"
|
| 2 |
-
|
| 3 |
services:
|
| 4 |
app:
|
| 5 |
build:
|
|
|
|
|
|
|
|
|
|
| 1 |
services:
|
| 2 |
app:
|
| 3 |
build:
|
src/api/dependency.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from src.api.services.embedding_service import EmbeddingService
|
| 3 |
+
from src.api.services.huggingface_service import HuggingFaceService
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
# Dependency to get EmbeddingService
|
| 7 |
+
def get_embedding_service() -> EmbeddingService:
|
| 8 |
+
return EmbeddingService(openai_api_key=os.getenv("OPENAI_API_KEY"))
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# Dependency to get HuggingFaceService
|
| 12 |
+
def get_huggingface_service() -> HuggingFaceService:
|
| 13 |
+
return HuggingFaceService()
|
src/api/models/embedding_models.py
CHANGED
|
@@ -17,10 +17,37 @@ class ReadEmbeddingRequest(BaseModel):
|
|
| 17 |
dataset_name: str
|
| 18 |
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
class UpdateEmbeddingRequest(BaseModel):
|
| 21 |
-
dataset_name: str
|
| 22 |
-
updates: Dict[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
|
| 25 |
class DeleteEmbeddingRequest(BaseModel):
|
| 26 |
dataset_name: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
dataset_name: str
|
| 18 |
|
| 19 |
|
| 20 |
+
# class UpdateEmbeddingRequest(BaseModel):
|
| 21 |
+
# updates: Dict[str, List] # Column name -> List of values
|
| 22 |
+
# target_column: str = "product_type"
|
| 23 |
+
# output_column: str = "embedding"
|
| 24 |
+
# model: str = "text-embedding-3-small"
|
| 25 |
+
# batch_size: int = 10
|
| 26 |
+
# max_concurrent_requests: int = 10
|
| 27 |
+
# dataset_name: str = "re-mind/product_type_embedding"
|
| 28 |
+
|
| 29 |
+
from pydantic import BaseModel
|
| 30 |
+
from typing import Dict, List
|
| 31 |
+
|
| 32 |
+
|
| 33 |
class UpdateEmbeddingRequest(BaseModel):
|
| 34 |
+
dataset_name: str = "re-mind/product_type_embedding"
|
| 35 |
+
updates: Dict[
|
| 36 |
+
str, List
|
| 37 |
+
] # Dictionary of column names and their corresponding values
|
| 38 |
+
target_column: str = (
|
| 39 |
+
"product_type" # Column in the new data to generate embeddings for
|
| 40 |
+
)
|
| 41 |
+
output_column: str = "embedding" # Column to store the generated embeddings
|
| 42 |
|
| 43 |
|
| 44 |
class DeleteEmbeddingRequest(BaseModel):
|
| 45 |
dataset_name: str
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# Request model for the /embed endpoint
|
| 49 |
+
class EmbedRequest(BaseModel):
|
| 50 |
+
texts: List[str] # List of strings to generate embeddings for
|
| 51 |
+
output_column: str = (
|
| 52 |
+
"embeddings" # Column to store embeddings (default: "embeddings")
|
| 53 |
+
)
|
src/api/services/embedding_service.py
CHANGED
|
@@ -1,146 +1,3 @@
|
|
| 1 |
-
# from openai import AsyncOpenAI
|
| 2 |
-
# import logging
|
| 3 |
-
# from typing import List, Dict
|
| 4 |
-
# import pandas as pd
|
| 5 |
-
# import asyncio
|
| 6 |
-
# from src.api.exceptions import OpenAIError
|
| 7 |
-
|
| 8 |
-
# # Set up structured logging
|
| 9 |
-
# logging.basicConfig(
|
| 10 |
-
# level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
| 11 |
-
# )
|
| 12 |
-
# logger = logging.getLogger(__name__)
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
# class EmbeddingService:
|
| 16 |
-
# def __init__(
|
| 17 |
-
# self,
|
| 18 |
-
# openai_api_key: str,
|
| 19 |
-
# model: str = "text-embedding-3-small",
|
| 20 |
-
# batch_size: int = 100,
|
| 21 |
-
# ):
|
| 22 |
-
# self.client = AsyncOpenAI(api_key=openai_api_key)
|
| 23 |
-
# self.model = model
|
| 24 |
-
# self.batch_size = batch_size
|
| 25 |
-
|
| 26 |
-
# async def get_embedding(self, text: str) -> List[float]:
|
| 27 |
-
# """Generate embeddings for the given text using OpenAI."""
|
| 28 |
-
# text = text.replace("\n", " ")
|
| 29 |
-
# try:
|
| 30 |
-
# response = await self.client.embeddings.create(
|
| 31 |
-
# input=[text], model=self.model
|
| 32 |
-
# )
|
| 33 |
-
# return response.data[0].embedding
|
| 34 |
-
# except Exception as e:
|
| 35 |
-
# logger.error(f"Failed to generate embedding: {e}")
|
| 36 |
-
# raise OpenAIError(f"OpenAI API error: {e}")
|
| 37 |
-
|
| 38 |
-
# async def create_embeddings(
|
| 39 |
-
# self, df: pd.DataFrame, target_column: str, output_column: str
|
| 40 |
-
# ) -> pd.DataFrame:
|
| 41 |
-
# """Create embeddings for the target column in the dataset."""
|
| 42 |
-
# logger.info("Generating embeddings...")
|
| 43 |
-
# batches = [
|
| 44 |
-
# df[i : i + self.batch_size] for i in range(0, len(df), self.batch_size)
|
| 45 |
-
# ]
|
| 46 |
-
# processed_batches = await asyncio.gather(
|
| 47 |
-
# *[
|
| 48 |
-
# self._process_batch(batch, target_column, output_column)
|
| 49 |
-
# for batch in batches
|
| 50 |
-
# ]
|
| 51 |
-
# )
|
| 52 |
-
# return pd.concat(processed_batches)
|
| 53 |
-
|
| 54 |
-
# async def _process_batch(
|
| 55 |
-
# self, df_batch: pd.DataFrame, target_column: str, output_column: str
|
| 56 |
-
# ) -> pd.DataFrame:
|
| 57 |
-
# """Process a batch of rows to generate embeddings."""
|
| 58 |
-
# embeddings = await asyncio.gather(
|
| 59 |
-
# *[self.get_embedding(row[target_column]) for _, row in df_batch.iterrows()]
|
| 60 |
-
# )
|
| 61 |
-
# df_batch[output_column] = embeddings
|
| 62 |
-
# return df_batch
|
| 63 |
-
|
| 64 |
-
# from openai import AsyncOpenAI
|
| 65 |
-
# import logging
|
| 66 |
-
# from typing import List, Dict
|
| 67 |
-
# import pandas as pd
|
| 68 |
-
# import asyncio
|
| 69 |
-
# from src.api.exceptions import OpenAIError
|
| 70 |
-
|
| 71 |
-
# # Set up structured logging
|
| 72 |
-
# logging.basicConfig(
|
| 73 |
-
# level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
| 74 |
-
# )
|
| 75 |
-
# logger = logging.getLogger(__name__)
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
# class EmbeddingService:
|
| 79 |
-
# def __init__(
|
| 80 |
-
# self,
|
| 81 |
-
# openai_api_key: str,
|
| 82 |
-
# model: str = "text-embedding-3-small",
|
| 83 |
-
# batch_size: int = 10,
|
| 84 |
-
# max_concurrent_requests: int = 10, # Limit to 10 concurrent requests
|
| 85 |
-
# ):
|
| 86 |
-
# self.client = AsyncOpenAI(api_key=openai_api_key)
|
| 87 |
-
# self.model = model
|
| 88 |
-
# self.batch_size = batch_size
|
| 89 |
-
# self.semaphore = asyncio.Semaphore(max_concurrent_requests) # Rate limiter
|
| 90 |
-
# self.total_requests = 0 # Total number of requests to process
|
| 91 |
-
# self.completed_requests = 0 # Number of completed requests
|
| 92 |
-
|
| 93 |
-
# async def get_embedding(self, text: str) -> List[float]:
|
| 94 |
-
# """Generate embeddings for the given text using OpenAI."""
|
| 95 |
-
# text = text.replace("\n", " ")
|
| 96 |
-
# try:
|
| 97 |
-
# async with self.semaphore: # Acquire a semaphore slot
|
| 98 |
-
# response = await self.client.embeddings.create(
|
| 99 |
-
# input=[text], model=self.model
|
| 100 |
-
# )
|
| 101 |
-
# self.completed_requests += 1 # Increment completed requests
|
| 102 |
-
# self._log_progress() # Log progress
|
| 103 |
-
# return response.data[0].embedding
|
| 104 |
-
# except Exception as e:
|
| 105 |
-
# logger.error(f"Failed to generate embedding: {e}")
|
| 106 |
-
# raise OpenAIError(f"OpenAI API error: {e}")
|
| 107 |
-
|
| 108 |
-
# async def create_embeddings(
|
| 109 |
-
# self, df: pd.DataFrame, target_column: str, output_column: str
|
| 110 |
-
# ) -> pd.DataFrame:
|
| 111 |
-
# """Create embeddings for the target column in the dataset."""
|
| 112 |
-
# logger.info("Generating embeddings...")
|
| 113 |
-
# self.total_requests = len(df) # Set total number of requests
|
| 114 |
-
# self.completed_requests = 0 # Reset completed requests counter
|
| 115 |
-
|
| 116 |
-
# batches = [
|
| 117 |
-
# df[i : i + self.batch_size] for i in range(0, len(df), self.batch_size)
|
| 118 |
-
# ]
|
| 119 |
-
# processed_batches = await asyncio.gather(
|
| 120 |
-
# *[
|
| 121 |
-
# self._process_batch(batch, target_column, output_column)
|
| 122 |
-
# for batch in batches
|
| 123 |
-
# ]
|
| 124 |
-
# )
|
| 125 |
-
# return pd.concat(processed_batches)
|
| 126 |
-
|
| 127 |
-
# async def _process_batch(
|
| 128 |
-
# self, df_batch: pd.DataFrame, target_column: str, output_column: str
|
| 129 |
-
# ) -> pd.DataFrame:
|
| 130 |
-
# """Process a batch of rows to generate embeddings."""
|
| 131 |
-
# embeddings = await asyncio.gather(
|
| 132 |
-
# *[self.get_embedding(row[target_column]) for _, row in df_batch.iterrows()]
|
| 133 |
-
# )
|
| 134 |
-
# df_batch[output_column] = embeddings
|
| 135 |
-
# return df_batch
|
| 136 |
-
|
| 137 |
-
# def _log_progress(self):
|
| 138 |
-
# """Log the progress of embedding generation."""
|
| 139 |
-
# progress = (self.completed_requests / self.total_requests) * 100
|
| 140 |
-
# logger.info(
|
| 141 |
-
# f"Progress: {self.completed_requests}/{self.total_requests} ({progress:.2f}%)"
|
| 142 |
-
# )
|
| 143 |
-
|
| 144 |
from openai import AsyncOpenAI
|
| 145 |
import logging
|
| 146 |
from typing import List, Dict, Union
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from openai import AsyncOpenAI
|
| 2 |
import logging
|
| 3 |
from typing import List, Dict, Union
|
src/api/services/huggingface_service.py
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
-
from datasets import Dataset, load_dataset
|
| 2 |
from huggingface_hub import HfApi, HfFolder
|
| 3 |
import logging
|
| 4 |
from typing import Optional, Dict, List
|
| 5 |
import pandas as pd
|
|
|
|
| 6 |
from src.api.exceptions import (
|
| 7 |
DatasetNotFoundError,
|
| 8 |
DatasetPushError,
|
|
@@ -45,19 +46,69 @@ class HuggingFaceService:
|
|
| 45 |
logger.error(f"Failed to read dataset: {e}")
|
| 46 |
raise DatasetNotFoundError(f"Dataset not found: {e}")
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
async def update_dataset(
|
| 49 |
-
self,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
) -> Optional[pd.DataFrame]:
|
| 51 |
-
"""Update a dataset on Hugging Face Hub."""
|
| 52 |
try:
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
except Exception as e:
|
| 62 |
logger.error(f"Failed to update dataset: {e}")
|
| 63 |
raise DatasetPushError(f"Failed to update dataset: {e}")
|
|
|
|
| 1 |
+
from datasets import Dataset, load_dataset, concatenate_datasets
|
| 2 |
from huggingface_hub import HfApi, HfFolder
|
| 3 |
import logging
|
| 4 |
from typing import Optional, Dict, List
|
| 5 |
import pandas as pd
|
| 6 |
+
from src.api.dependency import get_embedding_service, get_huggingface_service
|
| 7 |
from src.api.exceptions import (
|
| 8 |
DatasetNotFoundError,
|
| 9 |
DatasetPushError,
|
|
|
|
| 46 |
logger.error(f"Failed to read dataset: {e}")
|
| 47 |
raise DatasetNotFoundError(f"Dataset not found: {e}")
|
| 48 |
|
| 49 |
+
# async def update_dataset(
|
| 50 |
+
# self, dataset_name: str, updates: Dict[str, List]
|
| 51 |
+
# ) -> Optional[pd.DataFrame]:
|
| 52 |
+
# """Update a dataset on Hugging Face Hub."""
|
| 53 |
+
|
| 54 |
+
# embedding_service = get_embedding_service()
|
| 55 |
+
|
| 56 |
+
# try:
|
| 57 |
+
# df_src = await self.read_dataset(dataset_name)
|
| 58 |
+
# df_src = Dataset.from_dict(df_src)
|
| 59 |
+
# df_update = Dataset.from_dict(updates)
|
| 60 |
+
|
| 61 |
+
# df = concatenate_datasets(df_src, df_update)
|
| 62 |
+
|
| 63 |
+
# # for column, values in updates.items():
|
| 64 |
+
# # if column in df.columns:
|
| 65 |
+
# # df[column] = values
|
| 66 |
+
# # else:
|
| 67 |
+
# # logger.warning(f"Column '{column}' not found in dataset.")
|
| 68 |
+
# # await self.push_to_hub(df, dataset_name)
|
| 69 |
+
# # return df
|
| 70 |
+
# except Exception as e:
|
| 71 |
+
# logger.error(f"Failed to update dataset: {e}")
|
| 72 |
+
# raise DatasetPushError(f"Failed to update dataset: {e}")
|
| 73 |
+
|
| 74 |
async def update_dataset(
|
| 75 |
+
self,
|
| 76 |
+
dataset_name: str,
|
| 77 |
+
updates: Dict[str, List],
|
| 78 |
+
target_column: str,
|
| 79 |
+
output_column: str = "embeddings",
|
| 80 |
) -> Optional[pd.DataFrame]:
|
| 81 |
+
"""Update a dataset on Hugging Face Hub by generating embeddings for new data and concatenating it with the existing dataset."""
|
| 82 |
try:
|
| 83 |
+
# Step 1: Load the existing dataset from Hugging Face Hub
|
| 84 |
+
logger.info(
|
| 85 |
+
f"Loading existing dataset from Hugging Face Hub: {dataset_name}..."
|
| 86 |
+
)
|
| 87 |
+
existing_ds = await self.read_dataset(dataset_name)
|
| 88 |
+
existing_df = pd.DataFrame(existing_ds)
|
| 89 |
+
|
| 90 |
+
# Step 2: Convert the new updates into a DataFrame
|
| 91 |
+
logger.info("Converting updates to DataFrame...")
|
| 92 |
+
new_df = pd.DataFrame(updates)
|
| 93 |
+
|
| 94 |
+
# Step 3: Generate embeddings for the new data
|
| 95 |
+
logger.info("Generating embeddings for the new data...")
|
| 96 |
+
embedding_service = get_embedding_service() # Get the embedding service
|
| 97 |
+
new_df = await embedding_service.create_embeddings(
|
| 98 |
+
new_df, target_column, output_column
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
# Step 4: Concatenate the existing DataFrame with the new DataFrame
|
| 102 |
+
logger.info("Concatenating existing dataset with new data...")
|
| 103 |
+
updated_df = pd.concat([existing_df, new_df], ignore_index=True)
|
| 104 |
+
|
| 105 |
+
# Step 5: Push the updated dataset back to Hugging Face Hub
|
| 106 |
+
logger.info(
|
| 107 |
+
f"Pushing updated dataset to Hugging Face Hub: {dataset_name}..."
|
| 108 |
+
)
|
| 109 |
+
await self.push_to_hub(updated_df, dataset_name)
|
| 110 |
+
|
| 111 |
+
# return updated_df
|
| 112 |
except Exception as e:
|
| 113 |
logger.error(f"Failed to update dataset: {e}")
|
| 114 |
raise DatasetPushError(f"Failed to update dataset: {e}")
|
src/main.py
CHANGED
|
@@ -197,11 +197,13 @@ from src.api.models.embedding_models import (
|
|
| 197 |
ReadEmbeddingRequest,
|
| 198 |
UpdateEmbeddingRequest,
|
| 199 |
DeleteEmbeddingRequest,
|
|
|
|
| 200 |
)
|
| 201 |
from src.api.database import get_db, Database, QueryExecutionError, HealthCheckError
|
| 202 |
from src.api.services.embedding_service import EmbeddingService
|
| 203 |
from src.api.services.huggingface_service import HuggingFaceService
|
| 204 |
from src.api.exceptions import DatasetNotFoundError, DatasetPushError, OpenAIError
|
|
|
|
| 205 |
import pandas as pd
|
| 206 |
import logging
|
| 207 |
from dotenv import load_dotenv
|
|
@@ -249,24 +251,6 @@ async def health_check(db: Database = Depends(get_db)):
|
|
| 249 |
raise HTTPException(status_code=500, detail=str(e))
|
| 250 |
|
| 251 |
|
| 252 |
-
# Dependency to get EmbeddingService
|
| 253 |
-
def get_embedding_service() -> EmbeddingService:
|
| 254 |
-
return EmbeddingService(openai_api_key=os.getenv("OPENAI_API_KEY"))
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
# Dependency to get HuggingFaceService
|
| 258 |
-
def get_huggingface_service() -> HuggingFaceService:
|
| 259 |
-
return HuggingFaceService()
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
# Request model for the /embed endpoint
|
| 263 |
-
class EmbedRequest(BaseModel):
|
| 264 |
-
texts: List[str] # List of strings to generate embeddings for
|
| 265 |
-
output_column: str = (
|
| 266 |
-
"embeddings" # Column to store embeddings (default: "embeddings")
|
| 267 |
-
)
|
| 268 |
-
|
| 269 |
-
|
| 270 |
# Endpoint to generate embeddings for a list of strings
|
| 271 |
@app.post("/embed")
|
| 272 |
async def embed(
|
|
@@ -363,21 +347,51 @@ async def read_embeddings(
|
|
| 363 |
|
| 364 |
|
| 365 |
# Endpoint to update embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
@app.post("/update_embeddings")
|
| 367 |
async def update_embeddings(
|
| 368 |
request: UpdateEmbeddingRequest,
|
| 369 |
huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
| 370 |
):
|
| 371 |
"""
|
| 372 |
-
Update embeddings in a Hugging Face dataset.
|
| 373 |
"""
|
| 374 |
try:
|
| 375 |
-
|
| 376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
)
|
|
|
|
| 378 |
return {
|
| 379 |
"message": "Embeddings updated successfully.",
|
| 380 |
"dataset_name": request.dataset_name,
|
|
|
|
| 381 |
}
|
| 382 |
except DatasetPushError as e:
|
| 383 |
logger.error(f"Failed to update dataset: {e}")
|
|
|
|
| 197 |
ReadEmbeddingRequest,
|
| 198 |
UpdateEmbeddingRequest,
|
| 199 |
DeleteEmbeddingRequest,
|
| 200 |
+
EmbedRequest,
|
| 201 |
)
|
| 202 |
from src.api.database import get_db, Database, QueryExecutionError, HealthCheckError
|
| 203 |
from src.api.services.embedding_service import EmbeddingService
|
| 204 |
from src.api.services.huggingface_service import HuggingFaceService
|
| 205 |
from src.api.exceptions import DatasetNotFoundError, DatasetPushError, OpenAIError
|
| 206 |
+
from src.api.dependency import get_embedding_service, get_huggingface_service
|
| 207 |
import pandas as pd
|
| 208 |
import logging
|
| 209 |
from dotenv import load_dotenv
|
|
|
|
| 251 |
raise HTTPException(status_code=500, detail=str(e))
|
| 252 |
|
| 253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
# Endpoint to generate embeddings for a list of strings
|
| 255 |
@app.post("/embed")
|
| 256 |
async def embed(
|
|
|
|
| 347 |
|
| 348 |
|
| 349 |
# Endpoint to update embeddings
|
| 350 |
+
# @app.post("/update_embeddings")
|
| 351 |
+
# async def update_embeddings(
|
| 352 |
+
# request: UpdateEmbeddingRequest,
|
| 353 |
+
# huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
| 354 |
+
# ):
|
| 355 |
+
# """
|
| 356 |
+
# Update embeddings in a Hugging Face dataset.
|
| 357 |
+
# """
|
| 358 |
+
# try:
|
| 359 |
+
# df = await huggingface_service.update_dataset(
|
| 360 |
+
# request.dataset_name, request.updates
|
| 361 |
+
# )
|
| 362 |
+
# return {
|
| 363 |
+
# "message": "Embeddings updated successfully.",
|
| 364 |
+
# "dataset_name": request.dataset_name,
|
| 365 |
+
# }
|
| 366 |
+
# except DatasetPushError as e:
|
| 367 |
+
# logger.error(f"Failed to update dataset: {e}")
|
| 368 |
+
# raise HTTPException(status_code=500, detail=f"Failed to update dataset: {e}")
|
| 369 |
+
# except Exception as e:
|
| 370 |
+
# logger.error(f"An error occurred: {e}")
|
| 371 |
+
# raise HTTPException(status_code=500, detail=f"An error occurred: {e}")
|
| 372 |
+
|
| 373 |
+
|
| 374 |
@app.post("/update_embeddings")
|
| 375 |
async def update_embeddings(
|
| 376 |
request: UpdateEmbeddingRequest,
|
| 377 |
huggingface_service: HuggingFaceService = Depends(get_huggingface_service),
|
| 378 |
):
|
| 379 |
"""
|
| 380 |
+
Update embeddings in a Hugging Face dataset by generating embeddings for new data and concatenating it with the existing dataset.
|
| 381 |
"""
|
| 382 |
try:
|
| 383 |
+
# Call the update_dataset method to generate embeddings, concatenate, and push the updated dataset
|
| 384 |
+
updated_df = await huggingface_service.update_dataset(
|
| 385 |
+
request.dataset_name,
|
| 386 |
+
request.updates,
|
| 387 |
+
request.target_column,
|
| 388 |
+
request.output_column,
|
| 389 |
)
|
| 390 |
+
|
| 391 |
return {
|
| 392 |
"message": "Embeddings updated successfully.",
|
| 393 |
"dataset_name": request.dataset_name,
|
| 394 |
+
"num_rows": len(updated_df),
|
| 395 |
}
|
| 396 |
except DatasetPushError as e:
|
| 397 |
logger.error(f"Failed to update dataset: {e}")
|