Deploy aplikasi FastAPI sentiment analysis IndoBERTweet
Browse files- __pycache__/app.cpython-310.pyc +0 -0
- app.py +133 -0
- model_indoBERTweet_100Epochs_sentiment.pth +3 -0
- requirements.txt +8 -0
__pycache__/app.cpython-310.pyc
ADDED
|
Binary file (4.4 kB). View file
|
|
|
app.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import emoji
|
| 3 |
+
import re
|
| 4 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
| 5 |
+
from fastapi import FastAPI
|
| 6 |
+
from pydantic import BaseModel
|
| 7 |
+
|
| 8 |
+
# ====================================================================
|
| 9 |
+
# 1. KELAS LOGIKA ANDA (Disalin dari kode Anda)
|
| 10 |
+
# ====================================================================
|
| 11 |
+
|
| 12 |
+
class TextCleaner:
|
| 13 |
+
def __init__(self):
|
| 14 |
+
# Daftar karakter ini saya sederhanakan karena loop Anda sudah menangani huruf a-z
|
| 15 |
+
self.character = ['.', ',', ';', ':', '?', '!', '(', ')', '[', ']', '{', '}', '<', '>', '"', '/', '\'', '-', '@']
|
| 16 |
+
# Menambahkan semua huruf ke dalam daftar karakter untuk pembersihan
|
| 17 |
+
self.character.extend([chr(i) for i in range(ord('a'), ord('z') + 1)])
|
| 18 |
+
|
| 19 |
+
def repeatcharClean(self, text):
|
| 20 |
+
for char_to_clean in self.character:
|
| 21 |
+
# Menggunakan regex untuk mengganti 3 atau lebih karakter berulang menjadi satu
|
| 22 |
+
# Contoh: 'heloooo' -> 'helo'
|
| 23 |
+
pattern = re.compile(re.escape(char_to_clean) + r'{3,}')
|
| 24 |
+
text = pattern.sub(char_to_clean, text)
|
| 25 |
+
return text
|
| 26 |
+
|
| 27 |
+
def clean_review(self, text):
|
| 28 |
+
text = text.lower()
|
| 29 |
+
text = re.sub(r'\s+', ' ', text)
|
| 30 |
+
text = re.sub(r'[^\x00-\x7F]+', ' ', text)
|
| 31 |
+
|
| 32 |
+
new_text = []
|
| 33 |
+
for word in text.split(" "):
|
| 34 |
+
word = '@USER' if word.startswith('@') and len(word) > 1 else word
|
| 35 |
+
word = 'HTTPURL' if word.startswith('http') else word
|
| 36 |
+
new_text.append(word)
|
| 37 |
+
text = " ".join(new_text)
|
| 38 |
+
|
| 39 |
+
text = emoji.demojize(text)
|
| 40 |
+
text = re.sub(r':[A-Za-z_-]+:', ' ', text)
|
| 41 |
+
text = re.sub(r"([xX;:]'?[dDpPvVoO3)(])", ' ', text)
|
| 42 |
+
text = re.sub(r'["#$%&()*+,./:;<=>\[\]\\^_`{|}~]', ' ', text)
|
| 43 |
+
text = self.repeatcharClean(text)
|
| 44 |
+
|
| 45 |
+
# Membersihkan spasi berlebih yang mungkin muncul setelah pembersihan
|
| 46 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
| 47 |
+
return text
|
| 48 |
+
|
| 49 |
+
class SentimentPredictor:
|
| 50 |
+
def __init__(self, tokenizer, model):
|
| 51 |
+
self.tokenizer = tokenizer
|
| 52 |
+
self.model = model
|
| 53 |
+
self.device = torch.device("cpu")
|
| 54 |
+
self.model.to(self.device)
|
| 55 |
+
|
| 56 |
+
def predict(self, text: str) -> (str, float):
|
| 57 |
+
inputs = self.tokenizer(text, return_tensors='pt', truncation=True, padding=True, max_length=280)
|
| 58 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 59 |
+
|
| 60 |
+
with torch.no_grad():
|
| 61 |
+
outputs = self.model(**inputs)
|
| 62 |
+
|
| 63 |
+
logits = outputs.logits
|
| 64 |
+
predicted_label = torch.argmax(logits, dim=1).item()
|
| 65 |
+
|
| 66 |
+
probabilities = torch.softmax(logits, dim=1)
|
| 67 |
+
confidence_score = probabilities[0][predicted_label].item()
|
| 68 |
+
|
| 69 |
+
if predicted_label == 2:
|
| 70 |
+
sentiment = 'Negatif'
|
| 71 |
+
elif predicted_label == 1:
|
| 72 |
+
sentiment = 'Netral'
|
| 73 |
+
else: # predicted_label == 0
|
| 74 |
+
sentiment = 'Positif'
|
| 75 |
+
|
| 76 |
+
return sentiment, confidence_score
|
| 77 |
+
|
| 78 |
+
# ====================================================================
|
| 79 |
+
# 2. INISIALISASI MODEL & APLIKASI FASTAPI
|
| 80 |
+
# (Ini hanya dijalankan sekali saat API pertama kali startet)
|
| 81 |
+
# ====================================================================
|
| 82 |
+
|
| 83 |
+
print("Memuat model dan tokenizer...")
|
| 84 |
+
# Muat tokenizer dan model dasar
|
| 85 |
+
tokenizer = BertTokenizer.from_pretrained('indolem/indobertweet-base-uncased')
|
| 86 |
+
model = BertForSequenceClassification.from_pretrained('indolem/indobertweet-base-uncased', num_labels=3)
|
| 87 |
+
|
| 88 |
+
# Muat bobot model yang sudah Anda latih
|
| 89 |
+
model_path = 'model_indoBERTweet_100Epochs_sentiment.pth'
|
| 90 |
+
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
|
| 91 |
+
model.load_state_dict(state_dict, strict=False)
|
| 92 |
+
model.eval()
|
| 93 |
+
print("Model berhasil dimuat.")
|
| 94 |
+
|
| 95 |
+
# Buat instance dari kelas-kelas Anda
|
| 96 |
+
text_cleaner = TextCleaner()
|
| 97 |
+
sentiment_predictor = SentimentPredictor(tokenizer, model)
|
| 98 |
+
|
| 99 |
+
# Inisialisasi aplikasi FastAPI
|
| 100 |
+
app = FastAPI(
|
| 101 |
+
title="API Klasifikasi Sentimen",
|
| 102 |
+
description="Sebuah API untuk menganalisis sentimen teks Bahasa Indonesia."
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# ====================================================================
|
| 106 |
+
# 3. DEFINISIKAN MODEL INPUT & OUTPUT API
|
| 107 |
+
# ====================================================================
|
| 108 |
+
|
| 109 |
+
class TextInput(BaseModel):
|
| 110 |
+
text: str
|
| 111 |
+
|
| 112 |
+
class PredictionOutput(BaseModel):
|
| 113 |
+
sentiment: str
|
| 114 |
+
confidence: float
|
| 115 |
+
|
| 116 |
+
# ====================================================================
|
| 117 |
+
# 4. BUAT ENDPOINT PREDIKSI
|
| 118 |
+
# ====================================================================
|
| 119 |
+
|
| 120 |
+
@app.get("/")
|
| 121 |
+
def read_root():
|
| 122 |
+
return {"message": "Selamat datang di API Klasifikasi Sentimen"}
|
| 123 |
+
|
| 124 |
+
@app.post("/predict", response_model=PredictionOutput)
|
| 125 |
+
def predict_sentiment(request: TextInput):
|
| 126 |
+
# Langkah 1: Bersihkan teks input
|
| 127 |
+
cleaned_text = text_cleaner.clean_review(request.text)
|
| 128 |
+
|
| 129 |
+
# Langkah 2: Lakukan prediksi pada teks yang sudah bersih
|
| 130 |
+
sentiment, confidence = sentiment_predictor.predict(cleaned_text)
|
| 131 |
+
|
| 132 |
+
# Langkah 3: Kembalikan hasil prediksi
|
| 133 |
+
return PredictionOutput(sentiment=sentiment, confidence=confidence)
|
model_indoBERTweet_100Epochs_sentiment.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3a69f5d96885cfad1f22458b99c73c2336dbe3e4c1e2541428936f571e3ce363
|
| 3 |
+
size 442330099
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn[standard]
|
| 3 |
+
torch
|
| 4 |
+
transformers
|
| 5 |
+
emoji
|
| 6 |
+
pandas
|
| 7 |
+
pydantic
|
| 8 |
+
python-multipart
|