materials / app.py
reyhane1222's picture
Update app.py
7c8b3aa verified
import gradio as gr
from collections import Counter
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import torch
import math
# ============================== (همان پارامترها و توابع قبلی)
material_params = {
"brick": {"alpha": 0.3, "eps": 0.9, "I": 1600},
"stone": {"alpha": 0.25, "eps": 0.92, "I": 2000},
"polishedstone": {"alpha": 0.2, "eps": 0.9, "I": 2100},
"concrete": {"alpha": 0.35, "eps": 0.9, "I": 1800},
"metal": {"alpha": 0.5, "eps": 0.2, "I": 4000},
"glass": {"alpha": 0.1, "eps": 0.85, "I": 1500},
"wood": {"alpha": 0.35, "eps": 0.9, "I": 800},
"tile": {"alpha": 0.4, "eps": 0.9, "I": 1200},
"ceramic": {"alpha": 0.45, "eps": 0.92, "I": 1300},
"painted": {"alpha": 0.3, "eps": 0.9, "I": 1000},
"plastic": {"alpha": 0.1, "eps": 0.95, "I": 800},
"paper": {"alpha": 0.6, "eps": 0.95, "I": 500},
"mirror": {"alpha": 0.7, "eps": 0.1, "I": 2000},
"foliage": {"alpha": 0.25, "eps": 0.98, "I": 900},
"water": {"alpha": 0.06, "eps": 0.98, "I": 4200},
}
material_categories = {
"facade": {"members": ["brick", "stone", "polishedstone", "concrete", "tile", "ceramic", "painted"],
"candidates": ["brick", "stone", "polishedstone", "concrete", "tile", "ceramic", "painted"]},
"glazing": {"members": ["glass", "mirror"], "candidates": ["glass", "mirror"]},
"metallic": {"members": ["metal"], "candidates": ["metal"]},
"coverings": {"members": ["plastic", "paper", "fabric"], "candidates": ["plastic", "paper", "fabric"]},
"wood_elements": {"members": ["wood"], "candidates": ["wood"]},
"vegetation": {"members": ["foliage"], "candidates": ["foliage"]},
"water_bodies": {"members": ["water"], "candidates": ["water"]},
}
replacement_text = {
"facade": {"brick": "آجر روشن یا نمای سرامیکی/تایل روشن با پوشش بازتابی (cool coating)",
"stone": "سنگ روشن یا سنگ با پوشش بازتابی",
"polishedstone": "سنگ مات روشن یا سرامیک نما روشن",
"concrete": "بتن روشن با پوشش بازتابی یا موزاییک نما روشن",
"tile": "کاشی/سرامیک روشن یا متخلخل",
"ceramic": "سرامیک روشن با نمای بازتابی",
"painted": "رنگ بازتابی (cool paint) یا پوشش نانو بازتابی"},
"glazing": {"glass": "شیشه دو جداره با پوشش Low-E یا شیشه بازتابی کنترل‌شده",
"mirror": "شیشه مات یا شیشه Low-E با فریم عایق"},
"metallic": {"metal": "آلومینیوم رنگ روشن یا پوشش پودری با بازتاب بالا"},
"coverings": {"plastic": "سنگ سبک یا چوب روکش‌دار روشن (بسته به کاربرد)",
"paper": "در نما کاربرد معمول ندارد - بررسی بهینه‌سازی طراحی",
"fabric": "پارچه با روکش بازتابی یا سایه‌انداز طبیعی"},
"wood_elements": {"wood": "چوب رنگ روشن یا چوب با روکش بازتابی/محافظ"},
"vegetation": {"foliage": None},
"water_bodies": {"water": None},
}
# ============================== (توابع کمکی)
def ET_proxy(T, RH):
es = 0.6108 * math.exp((17.27 * T) / (T + 237.3))
return es * (1 - RH / 100.0)
def calc_deltaT(material, T_air, RH=40, u=2, S=700):
if material not in material_params: return 0.0
alpha, eps, I = material_params[material]["alpha"], material_params[material]["eps"], material_params[material]["I"]
A, B, C, D = 1.0, 0.4, 0.8, 0.015
h_c = 5.8 + 4.1 * u
if material == "foliage":
C_m = A * (1 - alpha) - D * ET_proxy(T_air, RH)
else:
C_m = A * (1 - alpha) + B * (1 - eps) + (C / math.sqrt(max(I, 1)))
gamma = S / max(h_c, 1e-6)
return gamma * C_m / 1000.0
# ============================== (بارگذاری مدل)
model_id = "prithivMLmods/Minc-Materials-23"
processor = AutoImageProcessor.from_pretrained(model_id)
model = AutoModelForImageClassification.from_pretrained(model_id)
patch_size = 224
def get_patches(image, size=224, stride=100):
patches = []
w, h = image.size
for scale in [1.0, 0.75, 0.5]:
scaled_w, scaled_h = int(w * scale), int(h * scale)
if min(scaled_w, scaled_h) < size: continue
scaled_img = image.resize((scaled_w, scaled_h), Image.Resampling.LANCZOS)
for i in range(0, scaled_w, stride):
for j in range(0, scaled_h, stride):
box = (i, j, min(i+size, scaled_w), min(j+size, scaled_h))
patch = scaled_img.crop(box)
if patch.size[0] >= size and patch.size[1] >= size:
patches.append(patch)
return patches
# ============================== (تابع اصلی Gradio)
def analyze_image(image, T_air=32.0, RH=40, u=2.0, S=700):
patches = get_patches(image, size=patch_size)
all_predictions = []
for patch in patches:
inputs = processor(images=patch, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
top1 = torch.argmax(probs[0]).item()
label = model.config.id2label[top1]
all_predictions.append(label)
counter = Counter(all_predictions)
total_patches = len(patches)
MIN_COUNT = 3
ignore_classes = ["food", "skin", "other", "wallpaper", "carpet","sky"]
materials_found = {label for label, count in counter.items() if count >= MIN_COUNT and label not in ignore_classes}
if len(materials_found) == 0:
return "هیچ مصالح معتبرِ کافی در تصویر شناسایی نشد (حداقل تکرار MIN_COUNT رعایت نمی‌شود)."
material_info = {}
for label in sorted(materials_found):
count = counter[label]
share = count / total_patches
dT = calc_deltaT(label, T_air, RH, u, S)
material_info[label] = {"count": count, "share": share, "deltaT": dT}
# مقایسه درون‌دسته‌ای و توصیه
IMPROVEMENT_THRESHOLD = 0.02
SHARE_IMPORTANCE_THRESHOLD = 0.03
recommendations = []
candidate_delta_cache = {}
for cat, info in material_categories.items():
for candidate in info["candidates"]:
if candidate not in candidate_delta_cache:
candidate_delta_cache[candidate] = calc_deltaT(candidate, T_air, RH, u, S)
for label, info in material_info.items():
found_category = None
for cat, cinfo in material_categories.items():
if label in cinfo["members"]:
found_category = cat
break
if found_category is None:
recommendations.append(f"{label}: در دسته‌های پیش‌تعریف قرار ندارد.")
continue
candidates = material_categories[found_category]["candidates"]
cand_list = [(c, candidate_delta_cache.get(c, calc_deltaT(c, T_air, RH, u, S))) for c in candidates]
cand_list.sort(key=lambda x: x[1])
current_dT = info["deltaT"]
best_candidate, best_dT = cand_list[0]
improvement = current_dT - best_dT
share_pct = info["share"] * 100
if improvement >= IMPROVEMENT_THRESHOLD and best_candidate != label:
importance = "High" if info["share"] >= SHARE_IMPORTANCE_THRESHOLD else "Optional"
suggestion_text = replacement_text.get(found_category, {}).get(best_candidate, f"Consider replacing with {best_candidate}")
recommendations.append(
f"{label} ({found_category}): ΔT={current_dT:+.2f}°C → جایگزین: {best_candidate} (ΔT={best_dT:+.2f}°C) | بهبود: {improvement:+.2f}°C | اهمیت: {importance} | پیشنهاد: {suggestion_text}"
)
else:
recommendations.append(f"{label}: ΔT={current_dT:+.2f}°C → نیازی به جایگزینی ندارد.")
scene_deltaT = sum([info["share"] * info["deltaT"] for info in material_info.values()])
recommendations.append(f"ΔT میانگین وزنی کل صحنه: {scene_deltaT:+.2f}°C")
recommendations.append(f"دمای مؤثر سطح: {T_air + scene_deltaT:.2f}°C")
return "\n".join(recommendations)
# ============================== (راه‌اندازی رابط Gradio)
iface = gr.Interface(
fn=analyze_image,
inputs=[
gr.Image(type="pil", label="آپلود تصویر"),
gr.Number(value=32.0, label="دمای هوا T_air (°C)"),
gr.Number(value=40, label="رطوبت نسبی RH (%)"),
gr.Number(value=2.0, label="سرعت باد u (m/s)"),
gr.Number(value=700, label="تابش خورشیدی S (W/m²)")
],
outputs=gr.Textbox(label="خروجی ΔT و توصیه‌ها"),
title="تحلیل مصالح و ΔT سطحی",
description="آپلود تصویر ساختمان/محیط → نمایش ΔT مصالح و توصیه جایگزینی منطقی."
)
iface.launch()