Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from collections import Counter | |
| from transformers import AutoImageProcessor, AutoModelForImageClassification | |
| from PIL import Image | |
| import torch | |
| import math | |
| # ============================== (همان پارامترها و توابع قبلی) | |
| material_params = { | |
| "brick": {"alpha": 0.3, "eps": 0.9, "I": 1600}, | |
| "stone": {"alpha": 0.25, "eps": 0.92, "I": 2000}, | |
| "polishedstone": {"alpha": 0.2, "eps": 0.9, "I": 2100}, | |
| "concrete": {"alpha": 0.35, "eps": 0.9, "I": 1800}, | |
| "metal": {"alpha": 0.5, "eps": 0.2, "I": 4000}, | |
| "glass": {"alpha": 0.1, "eps": 0.85, "I": 1500}, | |
| "wood": {"alpha": 0.35, "eps": 0.9, "I": 800}, | |
| "tile": {"alpha": 0.4, "eps": 0.9, "I": 1200}, | |
| "ceramic": {"alpha": 0.45, "eps": 0.92, "I": 1300}, | |
| "painted": {"alpha": 0.3, "eps": 0.9, "I": 1000}, | |
| "plastic": {"alpha": 0.1, "eps": 0.95, "I": 800}, | |
| "paper": {"alpha": 0.6, "eps": 0.95, "I": 500}, | |
| "mirror": {"alpha": 0.7, "eps": 0.1, "I": 2000}, | |
| "foliage": {"alpha": 0.25, "eps": 0.98, "I": 900}, | |
| "water": {"alpha": 0.06, "eps": 0.98, "I": 4200}, | |
| } | |
| material_categories = { | |
| "facade": {"members": ["brick", "stone", "polishedstone", "concrete", "tile", "ceramic", "painted"], | |
| "candidates": ["brick", "stone", "polishedstone", "concrete", "tile", "ceramic", "painted"]}, | |
| "glazing": {"members": ["glass", "mirror"], "candidates": ["glass", "mirror"]}, | |
| "metallic": {"members": ["metal"], "candidates": ["metal"]}, | |
| "coverings": {"members": ["plastic", "paper", "fabric"], "candidates": ["plastic", "paper", "fabric"]}, | |
| "wood_elements": {"members": ["wood"], "candidates": ["wood"]}, | |
| "vegetation": {"members": ["foliage"], "candidates": ["foliage"]}, | |
| "water_bodies": {"members": ["water"], "candidates": ["water"]}, | |
| } | |
| replacement_text = { | |
| "facade": {"brick": "آجر روشن یا نمای سرامیکی/تایل روشن با پوشش بازتابی (cool coating)", | |
| "stone": "سنگ روشن یا سنگ با پوشش بازتابی", | |
| "polishedstone": "سنگ مات روشن یا سرامیک نما روشن", | |
| "concrete": "بتن روشن با پوشش بازتابی یا موزاییک نما روشن", | |
| "tile": "کاشی/سرامیک روشن یا متخلخل", | |
| "ceramic": "سرامیک روشن با نمای بازتابی", | |
| "painted": "رنگ بازتابی (cool paint) یا پوشش نانو بازتابی"}, | |
| "glazing": {"glass": "شیشه دو جداره با پوشش Low-E یا شیشه بازتابی کنترلشده", | |
| "mirror": "شیشه مات یا شیشه Low-E با فریم عایق"}, | |
| "metallic": {"metal": "آلومینیوم رنگ روشن یا پوشش پودری با بازتاب بالا"}, | |
| "coverings": {"plastic": "سنگ سبک یا چوب روکشدار روشن (بسته به کاربرد)", | |
| "paper": "در نما کاربرد معمول ندارد - بررسی بهینهسازی طراحی", | |
| "fabric": "پارچه با روکش بازتابی یا سایهانداز طبیعی"}, | |
| "wood_elements": {"wood": "چوب رنگ روشن یا چوب با روکش بازتابی/محافظ"}, | |
| "vegetation": {"foliage": None}, | |
| "water_bodies": {"water": None}, | |
| } | |
| # ============================== (توابع کمکی) | |
| def ET_proxy(T, RH): | |
| es = 0.6108 * math.exp((17.27 * T) / (T + 237.3)) | |
| return es * (1 - RH / 100.0) | |
| def calc_deltaT(material, T_air, RH=40, u=2, S=700): | |
| if material not in material_params: return 0.0 | |
| alpha, eps, I = material_params[material]["alpha"], material_params[material]["eps"], material_params[material]["I"] | |
| A, B, C, D = 1.0, 0.4, 0.8, 0.015 | |
| h_c = 5.8 + 4.1 * u | |
| if material == "foliage": | |
| C_m = A * (1 - alpha) - D * ET_proxy(T_air, RH) | |
| else: | |
| C_m = A * (1 - alpha) + B * (1 - eps) + (C / math.sqrt(max(I, 1))) | |
| gamma = S / max(h_c, 1e-6) | |
| return gamma * C_m / 1000.0 | |
| # ============================== (بارگذاری مدل) | |
| model_id = "prithivMLmods/Minc-Materials-23" | |
| processor = AutoImageProcessor.from_pretrained(model_id) | |
| model = AutoModelForImageClassification.from_pretrained(model_id) | |
| patch_size = 224 | |
| def get_patches(image, size=224, stride=100): | |
| patches = [] | |
| w, h = image.size | |
| for scale in [1.0, 0.75, 0.5]: | |
| scaled_w, scaled_h = int(w * scale), int(h * scale) | |
| if min(scaled_w, scaled_h) < size: continue | |
| scaled_img = image.resize((scaled_w, scaled_h), Image.Resampling.LANCZOS) | |
| for i in range(0, scaled_w, stride): | |
| for j in range(0, scaled_h, stride): | |
| box = (i, j, min(i+size, scaled_w), min(j+size, scaled_h)) | |
| patch = scaled_img.crop(box) | |
| if patch.size[0] >= size and patch.size[1] >= size: | |
| patches.append(patch) | |
| return patches | |
| # ============================== (تابع اصلی Gradio) | |
| def analyze_image(image, T_air=32.0, RH=40, u=2.0, S=700): | |
| patches = get_patches(image, size=patch_size) | |
| all_predictions = [] | |
| for patch in patches: | |
| inputs = processor(images=patch, return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| probs = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
| top1 = torch.argmax(probs[0]).item() | |
| label = model.config.id2label[top1] | |
| all_predictions.append(label) | |
| counter = Counter(all_predictions) | |
| total_patches = len(patches) | |
| MIN_COUNT = 3 | |
| ignore_classes = ["food", "skin", "other", "wallpaper", "carpet","sky"] | |
| materials_found = {label for label, count in counter.items() if count >= MIN_COUNT and label not in ignore_classes} | |
| if len(materials_found) == 0: | |
| return "هیچ مصالح معتبرِ کافی در تصویر شناسایی نشد (حداقل تکرار MIN_COUNT رعایت نمیشود)." | |
| material_info = {} | |
| for label in sorted(materials_found): | |
| count = counter[label] | |
| share = count / total_patches | |
| dT = calc_deltaT(label, T_air, RH, u, S) | |
| material_info[label] = {"count": count, "share": share, "deltaT": dT} | |
| # مقایسه دروندستهای و توصیه | |
| IMPROVEMENT_THRESHOLD = 0.02 | |
| SHARE_IMPORTANCE_THRESHOLD = 0.03 | |
| recommendations = [] | |
| candidate_delta_cache = {} | |
| for cat, info in material_categories.items(): | |
| for candidate in info["candidates"]: | |
| if candidate not in candidate_delta_cache: | |
| candidate_delta_cache[candidate] = calc_deltaT(candidate, T_air, RH, u, S) | |
| for label, info in material_info.items(): | |
| found_category = None | |
| for cat, cinfo in material_categories.items(): | |
| if label in cinfo["members"]: | |
| found_category = cat | |
| break | |
| if found_category is None: | |
| recommendations.append(f"{label}: در دستههای پیشتعریف قرار ندارد.") | |
| continue | |
| candidates = material_categories[found_category]["candidates"] | |
| cand_list = [(c, candidate_delta_cache.get(c, calc_deltaT(c, T_air, RH, u, S))) for c in candidates] | |
| cand_list.sort(key=lambda x: x[1]) | |
| current_dT = info["deltaT"] | |
| best_candidate, best_dT = cand_list[0] | |
| improvement = current_dT - best_dT | |
| share_pct = info["share"] * 100 | |
| if improvement >= IMPROVEMENT_THRESHOLD and best_candidate != label: | |
| importance = "High" if info["share"] >= SHARE_IMPORTANCE_THRESHOLD else "Optional" | |
| suggestion_text = replacement_text.get(found_category, {}).get(best_candidate, f"Consider replacing with {best_candidate}") | |
| recommendations.append( | |
| f"{label} ({found_category}): ΔT={current_dT:+.2f}°C → جایگزین: {best_candidate} (ΔT={best_dT:+.2f}°C) | بهبود: {improvement:+.2f}°C | اهمیت: {importance} | پیشنهاد: {suggestion_text}" | |
| ) | |
| else: | |
| recommendations.append(f"{label}: ΔT={current_dT:+.2f}°C → نیازی به جایگزینی ندارد.") | |
| scene_deltaT = sum([info["share"] * info["deltaT"] for info in material_info.values()]) | |
| recommendations.append(f"ΔT میانگین وزنی کل صحنه: {scene_deltaT:+.2f}°C") | |
| recommendations.append(f"دمای مؤثر سطح: {T_air + scene_deltaT:.2f}°C") | |
| return "\n".join(recommendations) | |
| # ============================== (راهاندازی رابط Gradio) | |
| iface = gr.Interface( | |
| fn=analyze_image, | |
| inputs=[ | |
| gr.Image(type="pil", label="آپلود تصویر"), | |
| gr.Number(value=32.0, label="دمای هوا T_air (°C)"), | |
| gr.Number(value=40, label="رطوبت نسبی RH (%)"), | |
| gr.Number(value=2.0, label="سرعت باد u (m/s)"), | |
| gr.Number(value=700, label="تابش خورشیدی S (W/m²)") | |
| ], | |
| outputs=gr.Textbox(label="خروجی ΔT و توصیهها"), | |
| title="تحلیل مصالح و ΔT سطحی", | |
| description="آپلود تصویر ساختمان/محیط → نمایش ΔT مصالح و توصیه جایگزینی منطقی." | |
| ) | |
| iface.launch() |