from flask import Flask, render_template, request from PIL import Image import os import torch import cv2 import mediapipe as mp from transformers import SamModel, SamProcessor from diffusers.utils import load_image app = Flask(__name__) UPLOAD_FOLDER = 'static/uploads' OUTPUT_FOLDER = 'static/outputs' # Ensure folders exist os.makedirs(UPLOAD_FOLDER, exist_ok=True) os.makedirs(OUTPUT_FOLDER, exist_ok=True) # Load model once at startup model = SamModel.from_pretrained("Zigeng/SlimSAM-uniform-50") processor = SamProcessor.from_pretrained("Zigeng/SlimSAM-uniform-50") # Pose function def get_shoulder_coordinates(image_path): mp_pose = mp.solutions.pose pose = mp_pose.Pose() image = cv2.imread(image_path) if image is None: return None image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) results = pose.process(image_rgb) if results.pose_landmarks: height, width, _ = image.shape landmarks = results.pose_landmarks.landmark left_shoulder = (int(landmarks[11].x * width), int(landmarks[11].y * height)) right_shoulder = (int(landmarks[12].x * width), int(landmarks[12].y * height)) print(left_shoulder) print(right_shoulder) return left_shoulder, right_shoulder else: return None @app.route('/', methods=['GET', 'POST']) def index(): if request.method == 'POST': person_file = request.files['person_image'] tshirt_file = request.files['tshirt_image'] person_path = os.path.join(UPLOAD_FOLDER, 'person.jpg') tshirt_path = os.path.join(UPLOAD_FOLDER, 'tshirt.png') person_file.save(person_path) tshirt_file.save(tshirt_path) # Run your model coordinates = get_shoulder_coordinates(person_path) if coordinates is None: return "No pose detected." img = load_image(person_path) new_tshirt = load_image(tshirt_path) left_shoulder, right_shoulder = coordinates input_points = [[[left_shoulder[0], left_shoulder[1]], [right_shoulder[0], right_shoulder[1]]]] inputs = processor(img, input_points=input_points, return_tensors="pt") outputs = model(**inputs) masks = processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu()) mask_tensor = masks[0][0][2].to(dtype=torch.uint8) mask = transforms.ToPILImage()(mask_tensor * 255) new_tshirt = new_tshirt.resize(img.size, Image.LANCZOS) img_with_new_tshirt = Image.composite(new_tshirt, img, mask) result_path = os.path.join(OUTPUT_FOLDER, 'result.jpg') img_with_new_tshirt.save(result_path) return render_template('index.html', result_img='outputs/result.jpg') return render_template('index.html') if __name__ == '__main__': app.run(debug=True, host='0.0.0.0', port=6000)