File size: 9,660 Bytes
af758d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import subprocess
from typing import List, Union, Optional
import re
import argparse
def natural_key(s):
"""Generate a key that treats digits as integers for natural sorting."""
return [int(text) if text.isdigit() else text.lower() for text in re.split(r'(\d+)', s)]
def natural_sort(strings):
"""Sort a list of strings in human-friendly order (e.g., 'rgb_9' < 'rgb_10')."""
return sorted(strings, key=natural_key)
def create_teaser_video(
mp4_paths_or_dir: Union[List[str], str],
wave_output_dir: str,
single_output_dir: str,
grid_output_dir: Optional[str] = None,
grid_rows: int = 2,
grid_cols: int = 3,
use_mirror_views: bool = False,
use_mirror_wave: bool = False,
fps: int = 30,
):
if isinstance(mp4_paths_or_dir, str):
all_mp4s = [
os.path.join(mp4_paths_or_dir, f) for f in natural_sort(os.listdir(mp4_paths_or_dir))
if f.endswith(".mp4") and
"_wave_" not in f and "_view_idx_" not in f and
'grid_dataset' not in f and f.startswith("rgb")
]
else:
all_mp4s = mp4_paths_or_dir
os.makedirs(wave_output_dir, exist_ok=True)
os.makedirs(single_output_dir, exist_ok=True)
if grid_output_dir is not None:
os.makedirs(grid_output_dir, exist_ok=True)
def find_subvideos(main_path):
base = os.path.basename(main_path)
name_parts = base.split('_')
sample_idx = None
param = None
if len(name_parts) >= 3:
try:
sample_idx = int(name_parts[-2])
param = name_parts[-1].replace(".mp4", "")
except Exception:
pass
if sample_idx is None or param is None:
raise RuntimeError(f"Cannot parse sample idx and param from {base}")
wave_name = f"rgb_wave_{sample_idx}_{param}.mp4"
wave_path = os.path.join(os.path.dirname(main_path), wave_name)
if not os.path.isfile(wave_path):
raise FileNotFoundError(f"Wave video not found: {wave_path}")
views = []
dir_path = os.path.dirname(main_path)
for f in os.listdir(dir_path):
if f.startswith(f"rgb_{sample_idx}_view_idx_") and f.endswith(f"_{param}.mp4"):
views.append(f)
views = natural_sort(views)
views_paths = [os.path.join(dir_path, v) for v in views]
return sample_idx, wave_path, views_paths
# Save wave videos separately (with optional mirror wave)
for idx, main_vid_path in enumerate(all_mp4s):
sample_idx, wave_vid, _ = find_subvideos(main_vid_path)
input_files = [wave_vid]
input_labels = ["wave"]
if use_mirror_wave:
input_files.append(wave_vid)
input_labels.append("wave_mirror")
inputs_ffmpeg = []
for fpath in input_files:
inputs_ffmpeg.extend(["-i", fpath])
filter_parts = []
for i, label in enumerate(input_labels):
if "mirror" in label:
filter_parts.append(f"[{i}:v] setpts=PTS-STARTPTS,reverse [v{i}];")
else:
filter_parts.append(f"[{i}:v] setpts=PTS-STARTPTS [v{i}];")
segments = [f"[v{i}]" for i in range(len(input_labels))]
seg_str = "".join(segments)
filter_parts.append(f"{seg_str} concat=n={len(segments)}:v=1:a=0 [outv];")
filtergraph = "".join(filter_parts)
wave_output_path = os.path.join(wave_output_dir, f"{sample_idx}.mp4")
cmd = ["ffmpeg", "-y"] + inputs_ffmpeg + [
"-filter_complex", filtergraph,
"-map", "[outv]",
"-c:v", "libx264",
"-preset", "fast",
"-crf", "18",
"-r", str(fps),
wave_output_path,
]
print(f"Creating wave video: {wave_output_path}")
subprocess.run(cmd, check=True)
# Create single videos from views only (with optional mirror views), no wave here
for idx, main_vid_path in enumerate(all_mp4s):
sample_idx, _, views_vids = find_subvideos(main_vid_path)
if not views_vids:
print(f"No views found for sample {sample_idx}, skipping single video creation.")
continue
input_files = []
input_labels = []
for v in views_vids:
input_files.append(v)
input_labels.append("view")
if use_mirror_views:
input_files.append(v)
input_labels.append("view_mirror")
inputs_ffmpeg = []
for fpath in input_files:
inputs_ffmpeg.extend(["-i", fpath])
filter_parts = []
for i, label in enumerate(input_labels):
if "mirror" in label:
filter_parts.append(f"[{i}:v] setpts=PTS-STARTPTS,reverse [v{i}];")
else:
filter_parts.append(f"[{i}:v] setpts=PTS-STARTPTS [v{i}];")
segments = [f"[v{i}]" for i in range(len(input_labels))]
seg_str = "".join(segments)
filter_parts.append(f"{seg_str} concat=n={len(segments)}:v=1:a=0 [outv];")
filtergraph = "".join(filter_parts)
single_output_path = os.path.join(single_output_dir, f"{sample_idx}.mp4")
cmd = ["ffmpeg", "-y"] + inputs_ffmpeg + [
"-filter_complex", filtergraph,
"-map", "[outv]",
"-c:v", "libx264",
"-preset", "fast",
"-crf", "18",
"-r", str(fps),
single_output_path,
]
print(f"Creating single video (views only): {single_output_path}")
subprocess.run(cmd, check=True)
if grid_output_dir is None:
return
# Create grids from single concatenated videos (views only)
single_videos = natural_sort([f for f in os.listdir(single_output_dir) if f.endswith(".mp4")])
single_videos_paths = [os.path.join(single_output_dir, f) for f in single_videos]
batch_size = grid_rows * grid_cols
for i in range(0, len(single_videos_paths), batch_size):
batch = single_videos_paths[i:i+batch_size]
if len(batch) < batch_size:
print(f"Skipping last incomplete batch of size {len(batch)} for grid")
break
inputs_ffmpeg = []
for f in batch:
inputs_ffmpeg.extend(["-i", f])
filter_parts = []
for idx_in_batch in range(len(batch)):
filter_parts.append(f"[{idx_in_batch}:v] setpts=PTS-STARTPTS [v{idx_in_batch}];")
for r in range(grid_rows):
row_labels = "".join(f"[v{r*grid_cols + c}]" for c in range(grid_cols))
filter_parts.append(f"{row_labels} hstack=inputs={grid_cols} [row{r}];")
rows_str = "".join(f"[row{r}]" for r in range(grid_rows))
if grid_rows == 1:
filter_parts.append(f"{rows_str} copy [outv];")
else:
filter_parts.append(f"{rows_str} vstack=inputs={grid_rows} [outv];")
filtergraph = "".join(filter_parts)
grid_output_path = os.path.join(grid_output_dir, f"grid_{i//batch_size}.mp4")
cmd = ["ffmpeg", "-y"] + inputs_ffmpeg + [
"-filter_complex", filtergraph,
"-map", "[outv]",
"-c:v", "libx264",
"-preset", "fast",
"-crf", "18",
"-r", str(fps),
grid_output_path,
]
print(f"Creating grid video: {grid_output_path}")
subprocess.run(cmd, check=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Create teaser videos with separate wave and views-only outputs, and optional grids.')
parser.add_argument('--mp4_input', type=str, required=True, help='Input folder path containing mp4 files')
parser.add_argument('--wave_output_dir', type=str, required=True, help='Output folder path for wave only videos')
parser.add_argument('--single_output_dir', type=str, required=True, help='Output folder path for views-only concatenated videos')
parser.add_argument('--grid_output_dir', type=str, default=None, help='Output folder path for grid videos (optional)')
parser.add_argument('--use_mirror_views', action='store_true', help='Enable mirror views')
parser.add_argument('--use_mirror_wave', action='store_true', help='Enable mirror wave effect')
parser.add_argument('--grid_rows', type=int, default=2, help='Number of grid rows')
parser.add_argument('--grid_cols', type=int, default=3, help='Number of grid columns')
parser.add_argument('--fps', type=int, default=30, help='Output frame rate (fps)')
args = parser.parse_args()
create_teaser_video(
args.mp4_input,
wave_output_dir=args.wave_output_dir,
single_output_dir=args.single_output_dir,
grid_output_dir=args.grid_output_dir,
use_mirror_views=args.use_mirror_views,
use_mirror_wave=args.use_mirror_wave,
grid_rows=args.grid_rows,
grid_cols=args.grid_cols,
fps=args.fps,
)
|