### Environment setup Cosmos runs only on Linux systems. We have tested the installation with Ubuntu 24.04, 22.04, and 20.04. Cosmos requires the Python version to be `3.10.x`. Please also make sure you have `conda` installed ([instructions](https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html)). The below commands creates the `lyra` conda environment and installs the dependencies for inference: ```bash # Create the lyra conda environment. conda env create --file lyra.yaml # Activate the lyra conda environment. conda activate lyra # Install the dependencies. pip install -r requirements_gen3c.txt pip install -r requirements_lyra.txt # Patch Transformer engine linking issues in conda environments. ln -sf $CONDA_PREFIX/lib/python3.10/site-packages/nvidia/*/include/* $CONDA_PREFIX/include/ ln -sf $CONDA_PREFIX/lib/python3.10/site-packages/nvidia/*/include/* $CONDA_PREFIX/include/python3.10 # Install Transformer engine. pip install transformer-engine[pytorch]==1.12.0 # Install Apex for inference. git clone https://github.com/NVIDIA/apex CUDA_HOME=$CONDA_PREFIX pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" ./apex # Install MoGe for inference. pip install git+https://github.com/microsoft/MoGe.git # Install Mamba for reconstruction model. pip install --no-build-isolation "git+https://github.com/state-spaces/mamba@v2.2.4" ``` You can test the environment setup for inference with ```bash CUDA_HOME=$CONDA_PREFIX PYTHONPATH=$(pwd) python scripts/test_environment.py ``` ### Download Cosmos-Predict1 tokenizer 1. Generate a [Hugging Face](https://huggingface.co/settings/tokens) access token (if you haven't done so already). Set the access token to `Read` permission (default is `Fine-grained`). 2. Log in to Hugging Face with the access token: ```bash huggingface-cli login ``` 3. Download the Cosmos Tokenize model weights from [Hugging Face](https://huggingface.co/collections/nvidia/cosmos-predict1-67c9d1b97678dbf7669c89a7): ```bash python3 -m scripts.download_tokenizer_checkpoints --checkpoint_dir checkpoints/cosmos_predict1 --tokenizer_types CV8x8x8-720p ``` The downloaded files should be in the following structure: ``` checkpoints/ ├── Cosmos-Tokenize1-CV8x8x8-720p ├── Cosmos-Tokenize1-DV8x16x16-720p ├── Cosmos-Tokenize1-CI8x8-360p ├── Cosmos-Tokenize1-CI16x16-360p ├── Cosmos-Tokenize1-CV4x8x8-360p ├── Cosmos-Tokenize1-DI8x8-360p ├── Cosmos-Tokenize1-DI16x16-360p └── Cosmos-Tokenize1-DV4x8x8-360p ``` Under the checkpoint repository `checkpoints/`, we provide the encoder, decoder, the full autoencoder in TorchScript (PyTorch JIT mode) and the native PyTorch checkpoints. For instance for `Cosmos-Tokenize1-CV8x8x8-720p` model: ```bash ├── checkpoints/ │ ├── Cosmos-Tokenize1-CV8x8x8-720p/ │ │ ├── encoder.jit │ │ ├── decoder.jit │ │ ├── autoencoder.jit │ │ ├── model.pt ``` ### Download GEN3C checkpoints 1. Generate a [Hugging Face](https://huggingface.co/settings/tokens) access token (if you haven't done so already). Set the access token to `Read` permission (default is `Fine-grained`). 2. Log in to Hugging Face with the access token: ```bash huggingface-cli login ``` 3. Download the GEN3C model weights from [Hugging Face](https://huggingface.co/nvidia/GEN3C-Cosmos-7B): ```bash CUDA_HOME=$CONDA_PREFIX PYTHONPATH=$(pwd) python scripts/download_gen3c_checkpoints.py --checkpoint_dir checkpoints ``` ### Download Lyra checkpoints 1. Download the Lyra model weights from [Hugging Face](https://huggingface.co/nvidia/Lyra): ```bash CUDA_HOME=$CONDA_PREFIX PYTHONPATH=$(pwd) python scripts/download_lyra_checkpoints.py --checkpoint_dir checkpoints ```