Spaces:
Runtime error
Runtime error
File size: 1,940 Bytes
bc5a544 d4abf41 bc5a544 faf257a cb26575 bc5a544 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
title: Multimodal Gemma-270M Demo
emoji: π€
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 5.46.1
app_file: app.py
pinned: false
license: mit
---
# Multimodal Gemma-270M Demo
A live demo of the multimodal vision-language model based on Google's Gemma-270M, trained using the LLaVA architecture.
## Model Info
- **Base Model**: Google Gemma-270M (270 million parameters)
- **Vision Encoder**: CLIP ViT-Large/14@336px
- **Architecture**: LLaVA-style vision-language fusion
- **Training**: 7 epochs on LLaVA-150K dataset
- **Trainable Parameters**: 18.6M / 539M total
## Features
- πΌοΈ **Image Understanding**: Upload any image and ask questions about it
- π¬ **Conversational AI**: Natural language responses about visual content
- π― **Instruction Following**: Follows specific questions and prompts
- βοΈ **Adjustable Parameters**: Control response length and creativity
## Usage
1. **Load Model**: Click "π Load Model" to download and initialize the model
2. **Upload Image**: Use the image upload area to select your image
3. **Ask Questions**: Type your question in the text box
4. **Get Response**: The model will analyze the image and provide a response
## Example Questions
- "What do you see in this image?"
- "Describe the main objects in the picture"
- "What colors are prominent in this image?"
- "Are there any people in the image?"
- "What's the setting or location?"
## Technical Details
The model uses:
- **Vision Processing**: CLIP for image encoding
- **Language Generation**: Gemma-270M with LoRA fine-tuning
- **Multimodal Fusion**: Trainable projection layer
- **Quantization**: 4-bit for efficient inference
## Links
- **Model Repository**: [sagar007/multimodal-gemma-270m-llava](https://huggingface.co/sagar007/multimodal-gemma-270m-llava)
- **Source Code**: [GitHub](https://github.com/sagar431/multimodal-gemma-270m)
---
*Built with [Claude Code](https://claude.ai/code)* |