Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- app.py +349 -0
- requirements.txt +12 -0
- src/__init__.py +0 -0
- src/models/__init__.py +10 -0
- src/models/multimodal_gemma.py +323 -0
- src/utils/__init__.py +8 -0
- src/utils/config.py +110 -0
app.py
ADDED
|
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Gradio UI for Multimodal Gemma Model - Hugging Face Space Version
|
| 4 |
+
"""
|
| 5 |
+
import sys
|
| 6 |
+
import torch
|
| 7 |
+
import gradio as gr
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import io
|
| 11 |
+
import time
|
| 12 |
+
import logging
|
| 13 |
+
from huggingface_hub import hf_hub_download
|
| 14 |
+
|
| 15 |
+
# Model imports
|
| 16 |
+
from src.models import MultimodalGemmaLightning
|
| 17 |
+
from src.utils.config import load_config, merge_configs
|
| 18 |
+
|
| 19 |
+
# Global model variable
|
| 20 |
+
model = None
|
| 21 |
+
config = None
|
| 22 |
+
|
| 23 |
+
def download_and_load_model():
|
| 24 |
+
"""Download and load the trained multimodal model from HF"""
|
| 25 |
+
global model, config
|
| 26 |
+
|
| 27 |
+
if model is not None:
|
| 28 |
+
return "✅ Model already loaded!"
|
| 29 |
+
|
| 30 |
+
try:
|
| 31 |
+
print("🔄 Downloading multimodal Gemma model from HF...")
|
| 32 |
+
|
| 33 |
+
# Download model checkpoint
|
| 34 |
+
checkpoint_path = hf_hub_download(
|
| 35 |
+
repo_id="sagar007/multimodal-gemma-270m-llava",
|
| 36 |
+
filename="final_model.ckpt",
|
| 37 |
+
cache_dir="./model_cache"
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
# Download config files
|
| 41 |
+
model_config_path = hf_hub_download(
|
| 42 |
+
repo_id="sagar007/multimodal-gemma-270m-llava",
|
| 43 |
+
filename="configs/model_config.yaml",
|
| 44 |
+
cache_dir="./model_cache"
|
| 45 |
+
)
|
| 46 |
+
training_config_path = hf_hub_download(
|
| 47 |
+
repo_id="sagar007/multimodal-gemma-270m-llava",
|
| 48 |
+
filename="configs/training_config.yaml",
|
| 49 |
+
cache_dir="./model_cache"
|
| 50 |
+
)
|
| 51 |
+
data_config_path = hf_hub_download(
|
| 52 |
+
repo_id="sagar007/multimodal-gemma-270m-llava",
|
| 53 |
+
filename="configs/data_config.yaml",
|
| 54 |
+
cache_dir="./model_cache"
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
# Load configs
|
| 58 |
+
model_config = load_config(model_config_path)
|
| 59 |
+
training_config = load_config(training_config_path)
|
| 60 |
+
data_config = load_config(data_config_path)
|
| 61 |
+
config = merge_configs([model_config, training_config, data_config])
|
| 62 |
+
|
| 63 |
+
print("📁 Loading model from checkpoint...")
|
| 64 |
+
model = MultimodalGemmaLightning.load_from_checkpoint(
|
| 65 |
+
checkpoint_path,
|
| 66 |
+
config=config,
|
| 67 |
+
strict=False,
|
| 68 |
+
map_location="cuda" if torch.cuda.is_available() else "cpu"
|
| 69 |
+
)
|
| 70 |
+
model.eval()
|
| 71 |
+
|
| 72 |
+
# Move to appropriate device
|
| 73 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 74 |
+
model = model.to(device)
|
| 75 |
+
|
| 76 |
+
print(f"✅ Model loaded successfully on {device}!")
|
| 77 |
+
return f"✅ Model loaded successfully on {device}!"
|
| 78 |
+
|
| 79 |
+
except Exception as e:
|
| 80 |
+
error_msg = f"❌ Error loading model: {str(e)}"
|
| 81 |
+
print(error_msg)
|
| 82 |
+
return error_msg
|
| 83 |
+
|
| 84 |
+
def predict_with_image(image, question, max_tokens=100, temperature=0.7):
|
| 85 |
+
"""Generate response for image + text input"""
|
| 86 |
+
global model, config
|
| 87 |
+
|
| 88 |
+
if model is None:
|
| 89 |
+
return "❌ Please load the model first using the 'Load Model' button!"
|
| 90 |
+
|
| 91 |
+
if image is None:
|
| 92 |
+
return "❌ Please upload an image!"
|
| 93 |
+
|
| 94 |
+
if not question.strip():
|
| 95 |
+
question = "What do you see in this image?"
|
| 96 |
+
|
| 97 |
+
try:
|
| 98 |
+
# Get device
|
| 99 |
+
device = next(model.parameters()).device
|
| 100 |
+
|
| 101 |
+
# Process image
|
| 102 |
+
if isinstance(image, str):
|
| 103 |
+
image = Image.open(image).convert('RGB')
|
| 104 |
+
elif not isinstance(image, Image.Image):
|
| 105 |
+
image = Image.fromarray(image).convert('RGB')
|
| 106 |
+
|
| 107 |
+
# Prepare image for model
|
| 108 |
+
vision_inputs = model.model.vision_processor(
|
| 109 |
+
images=[image],
|
| 110 |
+
return_tensors="pt"
|
| 111 |
+
)
|
| 112 |
+
pixel_values = vision_inputs["pixel_values"].to(device)
|
| 113 |
+
|
| 114 |
+
# Prepare text prompt
|
| 115 |
+
prompt = f"<image>\\nHuman: {question}\\nAssistant:"
|
| 116 |
+
|
| 117 |
+
# Tokenize text
|
| 118 |
+
text_inputs = model.model.tokenizer(
|
| 119 |
+
prompt,
|
| 120 |
+
return_tensors="pt",
|
| 121 |
+
padding=True,
|
| 122 |
+
truncation=True,
|
| 123 |
+
max_length=256
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
input_ids = text_inputs["input_ids"].to(device)
|
| 127 |
+
attention_mask = text_inputs["attention_mask"].to(device)
|
| 128 |
+
|
| 129 |
+
# Generate response
|
| 130 |
+
with torch.no_grad():
|
| 131 |
+
# Use the full multimodal model with image inputs
|
| 132 |
+
outputs = model.model.generate(
|
| 133 |
+
input_ids=input_ids,
|
| 134 |
+
attention_mask=attention_mask,
|
| 135 |
+
images=pixel_values,
|
| 136 |
+
max_new_tokens=min(max_tokens, 150),
|
| 137 |
+
temperature=min(max(temperature, 0.1), 2.0),
|
| 138 |
+
do_sample=temperature > 0.1,
|
| 139 |
+
repetition_penalty=1.1
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
# Decode response
|
| 143 |
+
input_length = input_ids.shape[1]
|
| 144 |
+
generated_tokens = outputs[0][input_length:]
|
| 145 |
+
response = model.model.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
| 146 |
+
|
| 147 |
+
# Clean up response
|
| 148 |
+
response = response.strip()
|
| 149 |
+
if not response:
|
| 150 |
+
response = "I can see the image, but I'm having trouble generating a detailed response."
|
| 151 |
+
|
| 152 |
+
return response
|
| 153 |
+
|
| 154 |
+
except Exception as e:
|
| 155 |
+
error_msg = f"❌ Error during inference: {str(e)}"
|
| 156 |
+
print(error_msg)
|
| 157 |
+
return error_msg
|
| 158 |
+
|
| 159 |
+
def chat_with_image(image, question, history, max_tokens, temperature):
|
| 160 |
+
"""Chat interface function"""
|
| 161 |
+
if model is None:
|
| 162 |
+
response = "❌ Please load the model first!"
|
| 163 |
+
else:
|
| 164 |
+
response = predict_with_image(image, question, max_tokens, temperature)
|
| 165 |
+
|
| 166 |
+
# Add to history - using messages format
|
| 167 |
+
history.append({"role": "user", "content": question})
|
| 168 |
+
history.append({"role": "assistant", "content": response})
|
| 169 |
+
return history, ""
|
| 170 |
+
|
| 171 |
+
def create_gradio_interface():
|
| 172 |
+
"""Create the Gradio interface"""
|
| 173 |
+
|
| 174 |
+
# Custom CSS for better styling
|
| 175 |
+
css = """
|
| 176 |
+
.container {
|
| 177 |
+
max-width: 1200px;
|
| 178 |
+
margin: auto;
|
| 179 |
+
padding: 20px;
|
| 180 |
+
}
|
| 181 |
+
.header {
|
| 182 |
+
text-align: center;
|
| 183 |
+
margin-bottom: 30px;
|
| 184 |
+
}
|
| 185 |
+
.model-info {
|
| 186 |
+
background-color: #f0f8ff;
|
| 187 |
+
padding: 15px;
|
| 188 |
+
border-radius: 10px;
|
| 189 |
+
margin-bottom: 20px;
|
| 190 |
+
}
|
| 191 |
+
"""
|
| 192 |
+
|
| 193 |
+
with gr.Blocks(css=css, title="Multimodal Gemma Chat") as demo:
|
| 194 |
+
gr.HTML("""
|
| 195 |
+
<div class="header">
|
| 196 |
+
<h1>🎉 Multimodal Gemma-270M Chat</h1>
|
| 197 |
+
<p>Upload an image and chat with your trained vision-language model!</p>
|
| 198 |
+
<p><a href="https://huggingface.co/sagar007/multimodal-gemma-270m-llava">🤗 Model</a></p>
|
| 199 |
+
</div>
|
| 200 |
+
""")
|
| 201 |
+
|
| 202 |
+
# Model status section
|
| 203 |
+
with gr.Row():
|
| 204 |
+
with gr.Column():
|
| 205 |
+
gr.HTML("""
|
| 206 |
+
<div class="model-info">
|
| 207 |
+
<h3>📊 Model Info</h3>
|
| 208 |
+
<ul>
|
| 209 |
+
<li><strong>Base Model:</strong> Google Gemma-270M</li>
|
| 210 |
+
<li><strong>Vision:</strong> CLIP ViT-Large</li>
|
| 211 |
+
<li><strong>Training:</strong> LLaVA-150K + COCO Images</li>
|
| 212 |
+
<li><strong>Parameters:</strong> 18.6M trainable / 539M total</li>
|
| 213 |
+
</ul>
|
| 214 |
+
</div>
|
| 215 |
+
""")
|
| 216 |
+
|
| 217 |
+
# Model loading
|
| 218 |
+
load_btn = gr.Button("🚀 Load Model", variant="primary", size="lg")
|
| 219 |
+
model_status = gr.Textbox(
|
| 220 |
+
label="Model Status",
|
| 221 |
+
value="Click 'Load Model' to start",
|
| 222 |
+
interactive=False
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
gr.HTML("<hr>")
|
| 226 |
+
|
| 227 |
+
# Main interface
|
| 228 |
+
with gr.Row():
|
| 229 |
+
# Left column - Image and controls
|
| 230 |
+
with gr.Column(scale=1):
|
| 231 |
+
image_input = gr.Image(
|
| 232 |
+
label="📸 Upload Image",
|
| 233 |
+
type="pil",
|
| 234 |
+
height=300
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
# Example images
|
| 238 |
+
gr.HTML("<p><strong>💡 Tip:</strong> Upload any image and ask questions about it</p>")
|
| 239 |
+
|
| 240 |
+
# Generation settings
|
| 241 |
+
with gr.Accordion("⚙️ Generation Settings", open=False):
|
| 242 |
+
max_tokens = gr.Slider(
|
| 243 |
+
minimum=10,
|
| 244 |
+
maximum=200,
|
| 245 |
+
value=100,
|
| 246 |
+
step=10,
|
| 247 |
+
label="Max Tokens"
|
| 248 |
+
)
|
| 249 |
+
temperature = gr.Slider(
|
| 250 |
+
minimum=0.1,
|
| 251 |
+
maximum=2.0,
|
| 252 |
+
value=0.7,
|
| 253 |
+
step=0.1,
|
| 254 |
+
label="Temperature"
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
# Right column - Chat interface
|
| 258 |
+
with gr.Column(scale=2):
|
| 259 |
+
chatbot = gr.Chatbot(
|
| 260 |
+
label="💬 Chat with Image",
|
| 261 |
+
height=400,
|
| 262 |
+
show_label=True,
|
| 263 |
+
type="messages"
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
question_input = gr.Textbox(
|
| 267 |
+
label="❓ Ask about the image",
|
| 268 |
+
placeholder="What do you see in this image?",
|
| 269 |
+
lines=2
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
with gr.Row():
|
| 273 |
+
submit_btn = gr.Button("💬 Send", variant="primary")
|
| 274 |
+
clear_btn = gr.Button("🗑️ Clear Chat")
|
| 275 |
+
|
| 276 |
+
# Example prompts
|
| 277 |
+
with gr.Row():
|
| 278 |
+
gr.HTML("<h3>💡 Example Questions:</h3>")
|
| 279 |
+
|
| 280 |
+
with gr.Row():
|
| 281 |
+
example_questions = [
|
| 282 |
+
"What do you see in this image?",
|
| 283 |
+
"Describe the main objects in the picture.",
|
| 284 |
+
"What colors are prominent in this image?",
|
| 285 |
+
"Are there any people in the image?",
|
| 286 |
+
"What's the setting or location?",
|
| 287 |
+
"What objects are in the foreground?"
|
| 288 |
+
]
|
| 289 |
+
|
| 290 |
+
for i, question in enumerate(example_questions):
|
| 291 |
+
if i % 3 == 0:
|
| 292 |
+
with gr.Row():
|
| 293 |
+
pass
|
| 294 |
+
gr.Button(
|
| 295 |
+
question,
|
| 296 |
+
size="sm"
|
| 297 |
+
).click(
|
| 298 |
+
lambda x=question: x,
|
| 299 |
+
outputs=question_input
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
# Footer
|
| 303 |
+
gr.HTML("""
|
| 304 |
+
<hr>
|
| 305 |
+
<div style="text-align: center; margin-top: 20px;">
|
| 306 |
+
<p><strong>🎯 Your Multimodal Gemma Model</strong></p>
|
| 307 |
+
<p>Text-only → Vision-Language Model using LLaVA Architecture</p>
|
| 308 |
+
<p>Model: <a href="https://huggingface.co/sagar007/multimodal-gemma-270m-llava">sagar007/multimodal-gemma-270m-llava</a></p>
|
| 309 |
+
</div>
|
| 310 |
+
""")
|
| 311 |
+
|
| 312 |
+
# Event handlers
|
| 313 |
+
load_btn.click(
|
| 314 |
+
fn=download_and_load_model,
|
| 315 |
+
outputs=model_status
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
submit_btn.click(
|
| 319 |
+
fn=chat_with_image,
|
| 320 |
+
inputs=[image_input, question_input, chatbot, max_tokens, temperature],
|
| 321 |
+
outputs=[chatbot, question_input]
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
question_input.submit(
|
| 325 |
+
fn=chat_with_image,
|
| 326 |
+
inputs=[image_input, question_input, chatbot, max_tokens, temperature],
|
| 327 |
+
outputs=[chatbot, question_input]
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
clear_btn.click(
|
| 331 |
+
fn=lambda: ([], ""),
|
| 332 |
+
outputs=[chatbot, question_input]
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
return demo
|
| 336 |
+
|
| 337 |
+
def main():
|
| 338 |
+
"""Main function to launch the Gradio app"""
|
| 339 |
+
print("🚀 Starting Multimodal Gemma Gradio Space...")
|
| 340 |
+
|
| 341 |
+
# Create interface
|
| 342 |
+
demo = create_gradio_interface()
|
| 343 |
+
|
| 344 |
+
# Launch
|
| 345 |
+
print("🌐 Launching Gradio interface...")
|
| 346 |
+
demo.launch()
|
| 347 |
+
|
| 348 |
+
if __name__ == "__main__":
|
| 349 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=2.0.0
|
| 2 |
+
torchvision
|
| 3 |
+
transformers>=4.36.0
|
| 4 |
+
accelerate
|
| 5 |
+
bitsandbytes
|
| 6 |
+
peft>=0.6.0
|
| 7 |
+
lightning>=2.0.0
|
| 8 |
+
gradio>=4.0.0
|
| 9 |
+
pillow
|
| 10 |
+
huggingface-hub
|
| 11 |
+
pyyaml
|
| 12 |
+
omegaconf
|
src/__init__.py
ADDED
|
File without changes
|
src/models/__init__.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .multimodal_gemma import MultimodalGemma
|
| 2 |
+
from .lightning_module import MultimodalGemmaLightning
|
| 3 |
+
from .projectors import VisionProjector, AudioProjector
|
| 4 |
+
|
| 5 |
+
__all__ = [
|
| 6 |
+
"MultimodalGemma",
|
| 7 |
+
"MultimodalGemmaLightning",
|
| 8 |
+
"VisionProjector",
|
| 9 |
+
"AudioProjector"
|
| 10 |
+
]
|
src/models/multimodal_gemma.py
ADDED
|
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Multimodal Gemma model implementation
|
| 3 |
+
"""
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from transformers import (
|
| 7 |
+
AutoTokenizer,
|
| 8 |
+
AutoModelForCausalLM,
|
| 9 |
+
CLIPVisionModel,
|
| 10 |
+
CLIPProcessor,
|
| 11 |
+
BitsAndBytesConfig
|
| 12 |
+
)
|
| 13 |
+
from peft import LoraConfig, get_peft_model, TaskType
|
| 14 |
+
from typing import Dict, Any, Optional, Tuple
|
| 15 |
+
import logging
|
| 16 |
+
|
| 17 |
+
from .projectors import VisionProjector
|
| 18 |
+
|
| 19 |
+
logger = logging.getLogger(__name__)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class MultimodalGemma(nn.Module):
|
| 23 |
+
"""Multimodal Gemma model with vision and audio capabilities"""
|
| 24 |
+
|
| 25 |
+
def __init__(self, config: Dict[str, Any]):
|
| 26 |
+
super().__init__()
|
| 27 |
+
self.config = config
|
| 28 |
+
|
| 29 |
+
# Initialize tokenizer first
|
| 30 |
+
self._setup_tokenizer()
|
| 31 |
+
|
| 32 |
+
# Initialize language model
|
| 33 |
+
self._setup_language_model()
|
| 34 |
+
|
| 35 |
+
# Initialize vision components
|
| 36 |
+
self._setup_vision_components()
|
| 37 |
+
|
| 38 |
+
# Initialize projectors
|
| 39 |
+
self._setup_projectors()
|
| 40 |
+
|
| 41 |
+
# Freeze encoders
|
| 42 |
+
self._freeze_encoders()
|
| 43 |
+
|
| 44 |
+
# Setup LoRA
|
| 45 |
+
self._setup_lora()
|
| 46 |
+
|
| 47 |
+
logger.info("MultimodalGemma model initialized successfully")
|
| 48 |
+
|
| 49 |
+
# Move projectors to the same device as the language model
|
| 50 |
+
self._move_to_device()
|
| 51 |
+
|
| 52 |
+
def _setup_tokenizer(self):
|
| 53 |
+
"""Initialize and configure tokenizer"""
|
| 54 |
+
model_name = self.config["model"]["gemma_model_name"]
|
| 55 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 56 |
+
model_name,
|
| 57 |
+
trust_remote_code=True,
|
| 58 |
+
use_fast=True
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# Set padding token
|
| 62 |
+
if self.tokenizer.pad_token is None:
|
| 63 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 64 |
+
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
| 65 |
+
|
| 66 |
+
# Add special tokens
|
| 67 |
+
special_tokens = self.config.get("special_tokens", {})
|
| 68 |
+
new_tokens = []
|
| 69 |
+
|
| 70 |
+
for token_name, token_value in special_tokens.items():
|
| 71 |
+
if token_value not in self.tokenizer.get_vocab():
|
| 72 |
+
new_tokens.append(token_value)
|
| 73 |
+
|
| 74 |
+
if new_tokens:
|
| 75 |
+
self.tokenizer.add_special_tokens({"additional_special_tokens": new_tokens})
|
| 76 |
+
logger.info(f"Added special tokens: {new_tokens}")
|
| 77 |
+
|
| 78 |
+
def _setup_language_model(self):
|
| 79 |
+
"""Initialize language model with quantization if specified"""
|
| 80 |
+
model_name = self.config["model"]["gemma_model_name"]
|
| 81 |
+
|
| 82 |
+
# Setup quantization config
|
| 83 |
+
quantization_config = None
|
| 84 |
+
if self.config["model"].get("use_4bit", False):
|
| 85 |
+
quantization_config = BitsAndBytesConfig(
|
| 86 |
+
load_in_4bit=True,
|
| 87 |
+
bnb_4bit_compute_dtype=getattr(torch, self.config["model"]["bnb_4bit_compute_dtype"]),
|
| 88 |
+
bnb_4bit_quant_type=self.config["model"]["bnb_4bit_quant_type"],
|
| 89 |
+
bnb_4bit_use_double_quant=self.config["model"]["use_nested_quant"]
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
self.language_model = AutoModelForCausalLM.from_pretrained(
|
| 93 |
+
model_name,
|
| 94 |
+
quantization_config=quantization_config,
|
| 95 |
+
torch_dtype=torch.bfloat16,
|
| 96 |
+
device_map=None, # Lightning handles device placement
|
| 97 |
+
trust_remote_code=True,
|
| 98 |
+
attn_implementation="eager" # Use eager attention (flash_attn not required)
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
# Resize embeddings if we added special tokens
|
| 102 |
+
if len(self.tokenizer) > self.language_model.config.vocab_size:
|
| 103 |
+
self.language_model.resize_token_embeddings(len(self.tokenizer))
|
| 104 |
+
logger.info(f"Resized embeddings to {len(self.tokenizer)}")
|
| 105 |
+
|
| 106 |
+
# Store image token ID for later use
|
| 107 |
+
self.image_token_id = self.tokenizer.convert_tokens_to_ids(
|
| 108 |
+
self.config.get("special_tokens", {}).get("image_token", "<image>")
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
def _setup_vision_components(self):
|
| 112 |
+
"""Initialize vision encoder and processor"""
|
| 113 |
+
vision_model_name = self.config["model"]["vision_model_name"]
|
| 114 |
+
|
| 115 |
+
self.vision_encoder = CLIPVisionModel.from_pretrained(
|
| 116 |
+
vision_model_name,
|
| 117 |
+
torch_dtype=torch.bfloat16
|
| 118 |
+
)
|
| 119 |
+
self.vision_processor = CLIPProcessor.from_pretrained(vision_model_name)
|
| 120 |
+
|
| 121 |
+
logger.info(f"Loaded vision model: {vision_model_name}")
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def _setup_projectors(self):
|
| 125 |
+
"""Initialize projection layers"""
|
| 126 |
+
vision_dim = self.vision_encoder.config.hidden_size
|
| 127 |
+
language_dim = self.language_model.config.hidden_size
|
| 128 |
+
|
| 129 |
+
# Vision projector
|
| 130 |
+
self.vision_projector = VisionProjector(
|
| 131 |
+
vision_dim=vision_dim,
|
| 132 |
+
language_dim=language_dim,
|
| 133 |
+
hidden_dim=self.config["model"].get("projector_hidden_dim", language_dim)
|
| 134 |
+
).to(torch.bfloat16) # Match the model dtype
|
| 135 |
+
|
| 136 |
+
logger.info("Initialized vision projection layer")
|
| 137 |
+
|
| 138 |
+
def _freeze_encoders(self):
|
| 139 |
+
"""Freeze vision encoder"""
|
| 140 |
+
# Freeze vision encoder
|
| 141 |
+
for param in self.vision_encoder.parameters():
|
| 142 |
+
param.requires_grad = False
|
| 143 |
+
|
| 144 |
+
logger.info("Froze vision encoder parameters")
|
| 145 |
+
|
| 146 |
+
def _setup_lora(self):
|
| 147 |
+
"""Setup LoRA for the language model"""
|
| 148 |
+
lora_config = LoraConfig(
|
| 149 |
+
r=self.config["model"]["lora"]["r"],
|
| 150 |
+
lora_alpha=self.config["model"]["lora"]["alpha"],
|
| 151 |
+
target_modules=self.config["model"]["lora"]["target_modules"],
|
| 152 |
+
lora_dropout=self.config["model"]["lora"]["dropout"],
|
| 153 |
+
bias="none",
|
| 154 |
+
task_type=TaskType.CAUSAL_LM,
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
self.language_model = get_peft_model(self.language_model, lora_config)
|
| 158 |
+
self.language_model.print_trainable_parameters()
|
| 159 |
+
|
| 160 |
+
logger.info("Setup LoRA adapters")
|
| 161 |
+
|
| 162 |
+
def _move_to_device(self):
|
| 163 |
+
"""Move all components to the same device as the language model"""
|
| 164 |
+
device = next(self.language_model.parameters()).device
|
| 165 |
+
|
| 166 |
+
# Move vision components
|
| 167 |
+
self.vision_encoder = self.vision_encoder.to(device)
|
| 168 |
+
self.vision_projector = self.vision_projector.to(device)
|
| 169 |
+
|
| 170 |
+
logger.info(f"Moved vision components to device: {device}")
|
| 171 |
+
|
| 172 |
+
def encode_images(self, images: torch.Tensor) -> torch.Tensor:
|
| 173 |
+
"""
|
| 174 |
+
Encode images using CLIP and project to language space
|
| 175 |
+
|
| 176 |
+
Args:
|
| 177 |
+
images: [batch_size, 3, height, width]
|
| 178 |
+
Returns:
|
| 179 |
+
projected_features: [batch_size, language_dim]
|
| 180 |
+
"""
|
| 181 |
+
with torch.no_grad():
|
| 182 |
+
vision_outputs = self.vision_encoder(pixel_values=images)
|
| 183 |
+
# Use the pooled output (CLS token equivalent)
|
| 184 |
+
image_features = vision_outputs.pooler_output
|
| 185 |
+
|
| 186 |
+
# Project to language model space
|
| 187 |
+
projected_features = self.vision_projector(image_features)
|
| 188 |
+
return projected_features
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def forward(
|
| 192 |
+
self,
|
| 193 |
+
input_ids: torch.Tensor,
|
| 194 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 195 |
+
images: Optional[torch.Tensor] = None,
|
| 196 |
+
labels: Optional[torch.Tensor] = None,
|
| 197 |
+
) -> Dict[str, torch.Tensor]:
|
| 198 |
+
"""
|
| 199 |
+
Forward pass with multimodal inputs
|
| 200 |
+
|
| 201 |
+
Args:
|
| 202 |
+
input_ids: [batch_size, seq_len]
|
| 203 |
+
attention_mask: [batch_size, seq_len]
|
| 204 |
+
images: [batch_size, 3, height, width] or None
|
| 205 |
+
labels: [batch_size, seq_len] or None
|
| 206 |
+
|
| 207 |
+
Returns:
|
| 208 |
+
Dictionary with loss and logits
|
| 209 |
+
"""
|
| 210 |
+
if images is not None:
|
| 211 |
+
# Encode images and project to language space
|
| 212 |
+
image_features = self.encode_images(images) # [batch_size, language_dim]
|
| 213 |
+
|
| 214 |
+
# Replace <image> tokens with actual image features
|
| 215 |
+
input_embeds, attention_mask, labels = self._merge_image_features(
|
| 216 |
+
input_ids, image_features, attention_mask, labels
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
# Forward through language model with merged embeddings
|
| 220 |
+
outputs = self.language_model(
|
| 221 |
+
inputs_embeds=input_embeds,
|
| 222 |
+
attention_mask=attention_mask,
|
| 223 |
+
labels=labels,
|
| 224 |
+
)
|
| 225 |
+
else:
|
| 226 |
+
# Standard text-only forward pass
|
| 227 |
+
outputs = self.language_model(
|
| 228 |
+
input_ids=input_ids,
|
| 229 |
+
attention_mask=attention_mask,
|
| 230 |
+
labels=labels,
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
return {
|
| 234 |
+
"loss": outputs.loss,
|
| 235 |
+
"logits": outputs.logits,
|
| 236 |
+
}
|
| 237 |
+
|
| 238 |
+
def _merge_image_features(
|
| 239 |
+
self,
|
| 240 |
+
input_ids: torch.Tensor,
|
| 241 |
+
image_features: torch.Tensor,
|
| 242 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 243 |
+
labels: Optional[torch.Tensor] = None,
|
| 244 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 245 |
+
"""
|
| 246 |
+
Merge image features with text embeddings at <image> token positions
|
| 247 |
+
|
| 248 |
+
Args:
|
| 249 |
+
input_ids: [batch_size, seq_len]
|
| 250 |
+
image_features: [batch_size, language_dim]
|
| 251 |
+
attention_mask: [batch_size, seq_len]
|
| 252 |
+
labels: [batch_size, seq_len]
|
| 253 |
+
|
| 254 |
+
Returns:
|
| 255 |
+
input_embeds: [batch_size, seq_len, hidden_size]
|
| 256 |
+
attention_mask: [batch_size, seq_len]
|
| 257 |
+
labels: [batch_size, seq_len]
|
| 258 |
+
"""
|
| 259 |
+
batch_size, seq_len = input_ids.shape
|
| 260 |
+
|
| 261 |
+
# Get text embeddings
|
| 262 |
+
text_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 263 |
+
|
| 264 |
+
# Find positions of <image> tokens
|
| 265 |
+
image_token_mask = (input_ids == self.image_token_id)
|
| 266 |
+
|
| 267 |
+
# Replace <image> token embeddings with projected image features
|
| 268 |
+
for batch_idx in range(batch_size):
|
| 269 |
+
image_positions = torch.where(image_token_mask[batch_idx])[0]
|
| 270 |
+
|
| 271 |
+
if len(image_positions) > 0:
|
| 272 |
+
# Use the first <image> token position (assuming one image per sample)
|
| 273 |
+
img_pos = image_positions[0]
|
| 274 |
+
text_embeds[batch_idx, img_pos] = image_features[batch_idx]
|
| 275 |
+
|
| 276 |
+
return text_embeds, attention_mask, labels
|
| 277 |
+
|
| 278 |
+
def generate(
|
| 279 |
+
self,
|
| 280 |
+
input_ids: torch.Tensor,
|
| 281 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 282 |
+
images: Optional[torch.Tensor] = None,
|
| 283 |
+
max_new_tokens: int = 150,
|
| 284 |
+
temperature: float = 0.7,
|
| 285 |
+
do_sample: bool = True,
|
| 286 |
+
**kwargs
|
| 287 |
+
) -> torch.Tensor:
|
| 288 |
+
"""Generate text with multimodal context"""
|
| 289 |
+
|
| 290 |
+
if images is not None:
|
| 291 |
+
# Encode images and merge with text embeddings
|
| 292 |
+
image_features = self.encode_images(images)
|
| 293 |
+
input_embeds, attention_mask, _ = self._merge_image_features(
|
| 294 |
+
input_ids, image_features, attention_mask, None
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
# Generate using language model with merged embeddings
|
| 298 |
+
with torch.no_grad():
|
| 299 |
+
outputs = self.language_model.generate(
|
| 300 |
+
inputs_embeds=input_embeds,
|
| 301 |
+
attention_mask=attention_mask,
|
| 302 |
+
max_new_tokens=max_new_tokens,
|
| 303 |
+
temperature=temperature,
|
| 304 |
+
do_sample=do_sample,
|
| 305 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
| 306 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
| 307 |
+
**kwargs
|
| 308 |
+
)
|
| 309 |
+
else:
|
| 310 |
+
# Standard text-only generation
|
| 311 |
+
with torch.no_grad():
|
| 312 |
+
outputs = self.language_model.generate(
|
| 313 |
+
input_ids=input_ids,
|
| 314 |
+
attention_mask=attention_mask,
|
| 315 |
+
max_new_tokens=max_new_tokens,
|
| 316 |
+
temperature=temperature,
|
| 317 |
+
do_sample=do_sample,
|
| 318 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
| 319 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
| 320 |
+
**kwargs
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
return outputs
|
src/utils/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .config import load_config, merge_configs
|
| 2 |
+
from .logging import setup_logging
|
| 3 |
+
|
| 4 |
+
__all__ = [
|
| 5 |
+
"load_config",
|
| 6 |
+
"merge_configs",
|
| 7 |
+
"setup_logging"
|
| 8 |
+
]
|
src/utils/config.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Configuration utilities
|
| 3 |
+
"""
|
| 4 |
+
import yaml
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from typing import Dict, Any, List, Union
|
| 7 |
+
import logging
|
| 8 |
+
|
| 9 |
+
logger = logging.getLogger(__name__)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def load_config(config_path: Union[str, Path]) -> Dict[str, Any]:
|
| 13 |
+
"""Load configuration from YAML file"""
|
| 14 |
+
config_path = Path(config_path)
|
| 15 |
+
|
| 16 |
+
if not config_path.exists():
|
| 17 |
+
raise FileNotFoundError(f"Configuration file not found: {config_path}")
|
| 18 |
+
|
| 19 |
+
try:
|
| 20 |
+
with open(config_path, 'r', encoding='utf-8') as file:
|
| 21 |
+
config = yaml.safe_load(file)
|
| 22 |
+
|
| 23 |
+
logger.info(f"Loaded configuration from: {config_path}")
|
| 24 |
+
return config
|
| 25 |
+
|
| 26 |
+
except Exception as e:
|
| 27 |
+
logger.error(f"Failed to load configuration from {config_path}: {e}")
|
| 28 |
+
raise
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def merge_configs(configs: List[Dict[str, Any]]) -> Dict[str, Any]:
|
| 32 |
+
"""Merge multiple configuration dictionaries"""
|
| 33 |
+
merged = {}
|
| 34 |
+
|
| 35 |
+
for config in configs:
|
| 36 |
+
merged.update(config)
|
| 37 |
+
|
| 38 |
+
logger.info(f"Merged {len(configs)} configuration files")
|
| 39 |
+
return merged
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def save_config(config: Dict[str, Any], save_path: Union[str, Path]) -> None:
|
| 43 |
+
"""Save configuration to YAML file"""
|
| 44 |
+
save_path = Path(save_path)
|
| 45 |
+
save_path.parent.mkdir(parents=True, exist_ok=True)
|
| 46 |
+
|
| 47 |
+
try:
|
| 48 |
+
with open(save_path, 'w', encoding='utf-8') as file:
|
| 49 |
+
yaml.dump(config, file, default_flow_style=False, indent=2)
|
| 50 |
+
|
| 51 |
+
logger.info(f"Saved configuration to: {save_path}")
|
| 52 |
+
|
| 53 |
+
except Exception as e:
|
| 54 |
+
logger.error(f"Failed to save configuration to {save_path}: {e}")
|
| 55 |
+
raise
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def validate_config(config: Dict[str, Any]) -> bool:
|
| 59 |
+
"""Validate configuration structure"""
|
| 60 |
+
required_sections = ["model", "training", "data"]
|
| 61 |
+
|
| 62 |
+
for section in required_sections:
|
| 63 |
+
if section not in config:
|
| 64 |
+
logger.error(f"Missing required configuration section: {section}")
|
| 65 |
+
return False
|
| 66 |
+
|
| 67 |
+
# Validate model config
|
| 68 |
+
model_config = config["model"]
|
| 69 |
+
required_model_keys = ["gemma_model_name", "vision_model_name", "lora"]
|
| 70 |
+
for key in required_model_keys:
|
| 71 |
+
if key not in model_config:
|
| 72 |
+
logger.error(f"Missing required model config key: {key}")
|
| 73 |
+
return False
|
| 74 |
+
|
| 75 |
+
# Validate training config
|
| 76 |
+
training_config = config["training"]
|
| 77 |
+
required_training_keys = ["max_epochs", "batch_size", "lora_lr", "projector_lr"]
|
| 78 |
+
for key in required_training_keys:
|
| 79 |
+
if key not in training_config:
|
| 80 |
+
logger.error(f"Missing required training config key: {key}")
|
| 81 |
+
return False
|
| 82 |
+
|
| 83 |
+
# Validate data config
|
| 84 |
+
data_config = config["data"]
|
| 85 |
+
required_data_keys = ["dataset_name", "max_length", "image_size"]
|
| 86 |
+
for key in required_data_keys:
|
| 87 |
+
if key not in data_config:
|
| 88 |
+
logger.error(f"Missing required data config key: {key}")
|
| 89 |
+
return False
|
| 90 |
+
|
| 91 |
+
logger.info("Configuration validation passed")
|
| 92 |
+
return True
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def update_config(config: Dict[str, Any], updates: Dict[str, Any]) -> Dict[str, Any]:
|
| 96 |
+
"""Update configuration with new values"""
|
| 97 |
+
def deep_update(base_dict, update_dict):
|
| 98 |
+
"""Recursively update nested dictionaries"""
|
| 99 |
+
for key, value in update_dict.items():
|
| 100 |
+
if isinstance(value, dict) and key in base_dict and isinstance(base_dict[key], dict):
|
| 101 |
+
deep_update(base_dict[key], value)
|
| 102 |
+
else:
|
| 103 |
+
base_dict[key] = value
|
| 104 |
+
|
| 105 |
+
import copy
|
| 106 |
+
updated_config = copy.deepcopy(config)
|
| 107 |
+
deep_update(updated_config, updates)
|
| 108 |
+
|
| 109 |
+
logger.info("Configuration updated")
|
| 110 |
+
return updated_config
|