Spaces:
Build error
Build error
| import gradio as gr | |
| import open_clip | |
| import torch | |
| import requests | |
| import numpy as np | |
| from PIL import Image | |
| model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP') | |
| tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP') | |
| def predict(inp): | |
| image = preprocess_val(inp).unsqueeze(0) | |
| # catgs = [ | |
| # "Shirts", | |
| # "SetShirtsPants", | |
| # "SetJacketsPants", | |
| # "Pants", | |
| # "Jeans", | |
| # "JacketsCoats", | |
| # "Shoes", | |
| # "Underpants", | |
| # "Socks", | |
| # "Hats", | |
| # "Wallets", | |
| # "Bags", | |
| # "Scarfs", | |
| # "Parasols&Umbrellas", | |
| # "Necklaces", | |
| # "Towels&Robes", | |
| # "WallObjects", | |
| # "Rugs", | |
| # "Glassware", | |
| # "Mugs&Cups", | |
| # "OralCare" | |
| # ] | |
| # text = tokenizer(catgs) | |
| # with torch.no_grad(), torch.cuda.amp.autocast(): | |
| # image_features = model.encode_image(image) | |
| # image_features /= image_features.norm(dim=-1, keepdim=True) | |
| # text_features = model.encode_text(text) | |
| # text_features /= text_features.norm(dim=-1, keepdim=True) | |
| # text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) | |
| # max_prob_idx = np.argmax(text_probs) | |
| # pred_lbl = catgs[max_prob_idx] | |
| # pred_lbl_prob = text_probs[0, max_prob_idx].item() | |
| pred_lbl = "clothing" | |
| mw = ["men", "women", "boy", "girl"] | |
| catgs = [ | |
| mw[0] + "s " + pred_lbl, | |
| mw[1] + "s " + pred_lbl, | |
| mw[2] + "s " + pred_lbl, | |
| mw[3] + "s " + pred_lbl | |
| ] | |
| text = tokenizer(catgs) | |
| with torch.no_grad(), torch.cuda.amp.autocast(): | |
| image_features = model.encode_image(image) | |
| text_features = model.encode_text(text) | |
| image_features /= image_features.norm(dim=-1, keepdim=True) | |
| text_features /= text_features.norm(dim=-1, keepdim=True) | |
| text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) | |
| max_prob_idx = np.argmax(text_probs) | |
| pred_lbl_f = mw[max_prob_idx] | |
| pred_lbl_prob_f = text_probs[0, max_prob_idx].item() | |
| # tlt = f"{pred_lbl} <{100.0 * pred_lbl_prob:.1f}%> , {pred_lbl_f} <{100.0 * pred_lbl_prob_f:.1f}%>" | |
| tlt = f"{pred_lbl_f} <{100.0 * pred_lbl_prob_f:.1f}%>" | |
| return(tlt) | |
| gr.Interface(fn=predict, | |
| inputs=gr.Image(type="pil"), | |
| outputs=gr.Label(), | |
| examples=["imgs/cargo.jpg", "imgs/palazzo.jpg", | |
| "imgs/leggings.jpg", "imgs/dresspants.jpg"]).launch(share=True) | |