Spaces:
Sleeping
Sleeping
Update streamlit_app.py
Browse files- streamlit_app.py +92 -98
streamlit_app.py
CHANGED
|
@@ -1,98 +1,92 @@
|
|
| 1 |
-
# app.py
|
| 2 |
-
import os
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
#
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
# ------------------
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
if
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
st.session_state["chat_history"][-1] = (user_input, answer)
|
| 94 |
-
|
| 95 |
-
# Display chat history using Streamlit chat messages
|
| 96 |
-
for q, a in st.session_state["chat_history"]:
|
| 97 |
-
st.chat_message("user").write(q)
|
| 98 |
-
st.chat_message("assistant").write(a)
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
import streamlit as st
|
| 9 |
+
# from dotenv import load_dotenv
|
| 10 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 11 |
+
from langchain.memory import ConversationBufferMemory
|
| 12 |
+
from langchain_community.vectorstores import FAISS
|
| 13 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 14 |
+
from langchain.chat_models import ChatOpenAI
|
| 15 |
+
|
| 16 |
+
# ------------------ Load environment variables ------------------
|
| 17 |
+
# load_dotenv()
|
| 18 |
+
OPENAI_API_KEY = os.environ.getenv("OPENAI_API_KEY")
|
| 19 |
+
|
| 20 |
+
# ------------------ Paths ------------------
|
| 21 |
+
VECTORSTORE_PATH = os.path.join("storage", "faiss_index") # folder containing index.faiss and index.pkl
|
| 22 |
+
|
| 23 |
+
# ------------------ Load vectorstore ------------------
|
| 24 |
+
@st.cache_resource
|
| 25 |
+
def load_vectorstore(path):
|
| 26 |
+
if not os.path.exists(path):
|
| 27 |
+
st.error(f"FAISS index not found at {path}. Please run ingest.py first.")
|
| 28 |
+
return None
|
| 29 |
+
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
|
| 30 |
+
vectorstore = FAISS.load_local(
|
| 31 |
+
path,
|
| 32 |
+
embeddings,
|
| 33 |
+
allow_dangerous_deserialization=True
|
| 34 |
+
)
|
| 35 |
+
return vectorstore
|
| 36 |
+
|
| 37 |
+
vectorstore = load_vectorstore(VECTORSTORE_PATH)
|
| 38 |
+
if vectorstore is None:
|
| 39 |
+
st.stop()
|
| 40 |
+
|
| 41 |
+
# ------------------ Load LLM ------------------
|
| 42 |
+
@st.cache_resource
|
| 43 |
+
def load_llm():
|
| 44 |
+
llm = ChatOpenAI(
|
| 45 |
+
model_name="gpt-3.5-turbo",
|
| 46 |
+
temperature=0,
|
| 47 |
+
openai_api_key=OPENAI_API_KEY
|
| 48 |
+
)
|
| 49 |
+
return llm
|
| 50 |
+
|
| 51 |
+
llm = load_llm()
|
| 52 |
+
|
| 53 |
+
# ------------------ Memory ------------------
|
| 54 |
+
memory = ConversationBufferMemory(
|
| 55 |
+
memory_key="chat_history",
|
| 56 |
+
return_messages=True
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# ------------------ Conversational Retrieval Chain ------------------
|
| 60 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 61 |
+
llm=llm,
|
| 62 |
+
retriever=vectorstore.as_retriever(search_kwargs={"k": 3}),
|
| 63 |
+
memory=memory,
|
| 64 |
+
output_key="answer"
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
# ------------------ Streamlit UI ------------------
|
| 68 |
+
st.title("π Diabetes Chatbot")
|
| 69 |
+
st.write("Chat with the bot about diabetes. It remembers your questions during this session!")
|
| 70 |
+
|
| 71 |
+
# Initialize chat history
|
| 72 |
+
if "chat_history" not in st.session_state:
|
| 73 |
+
st.session_state["chat_history"] = []
|
| 74 |
+
|
| 75 |
+
# ------------------ Chat Interface ------------------
|
| 76 |
+
user_input = st.chat_input("Type your question here...")
|
| 77 |
+
|
| 78 |
+
if user_input:
|
| 79 |
+
# Display user message instantly
|
| 80 |
+
st.session_state["chat_history"].append((user_input, None))
|
| 81 |
+
|
| 82 |
+
# Run QA chain and generate answer
|
| 83 |
+
with st.spinner("Bot is thinking..."):
|
| 84 |
+
result = qa_chain({"question": user_input, "chat_history": st.session_state["chat_history"]})
|
| 85 |
+
answer = result["answer"]
|
| 86 |
+
# Update the last user message with the bot response
|
| 87 |
+
st.session_state["chat_history"][-1] = (user_input, answer)
|
| 88 |
+
|
| 89 |
+
# Display chat history using Streamlit chat messages
|
| 90 |
+
for q, a in st.session_state["chat_history"]:
|
| 91 |
+
st.chat_message("user").write(q)
|
| 92 |
+
st.chat_message("assistant").write(a)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|