Spaces:
Sleeping
Sleeping
| #!/usr/bin/env python | |
| # coding: utf-8 | |
| # # Araba Fiyatı Tahmin Eden Model ve Deployment | |
| #import libraries | |
| import pandas as pd | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.linear_model import LinearRegression | |
| from sklearn.metrics import r2_score,mean_squared_error | |
| from sklearn.pipeline import Pipeline | |
| from sklearn.compose import ColumnTransformer | |
| from sklearn.preprocessing import StandardScaler,OneHotEncoder | |
| #Load data | |
| df=pd.read_excel('cars.xls') | |
| X=df.drop('Price',axis=1) | |
| y=df[['Price']] | |
| X_train,X_test,y_train,y_test=train_test_split(X,y, | |
| test_size=0.2, | |
| random_state=42) | |
| preproccer=ColumnTransformer(transformers=[('num',StandardScaler(), | |
| ['Mileage','Cylinder','Liter','Doors']), | |
| ('cat',OneHotEncoder(),['Make','Model','Trim','Type'])]) | |
| model=LinearRegression() | |
| pipe=Pipeline(steps=[('preprocessor',preproccer), | |
| ('model',model)]) | |
| pipe.fit(X_train,y_train) | |
| y_pred=pipe.predict(X_test) | |
| mean_squared_error(y_test,y_pred)**0.5,r2_score(y_test,y_pred) | |
| import streamlit as st | |
| def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather): | |
| input_data=pd.DataFrame({ | |
| 'Make':[make], | |
| 'Model':[model], | |
| 'Trim':[trim], | |
| 'Mileage':[mileage], | |
| 'Type':[car_type], | |
| 'Car_type':[car_type], | |
| 'Cylinder':[cylinder], | |
| 'Liter':[liter], | |
| 'Doors':[doors], | |
| 'Cruise':[cruise], | |
| 'Sound':[sound], | |
| 'Leather':[leather] | |
| }) | |
| prediction=pipe.predict(input_data)[0] | |
| return prediction | |
| st.title("Car Price Prediction:red_car:@SalihaRanaUzun") | |
| st.write("Enter the Car Details to predict its price") | |
| make=st.selectbox("Make",df['Make'].unique()) | |
| model=st.selectbox("Model",df[df['Make']==make]['Model'].unique()) | |
| trim=st.selectbox("Trim",df[(df['Make']==make) & (df['Model']==model)]['Trim'].unique()) | |
| mileage=st.number_input("Mileage",200,60000) | |
| car_type=st.selectbox("Type",df[(df['Make']==make) & (df['Model']==model) & (df['Trim']==trim )]['Type'].unique()) | |
| cylinder=st.selectbox("Cylinder",df['Cylinder'].unique()) | |
| liter=st.number_input("Liter",1,6) | |
| doors=st.selectbox("Doors",df['Doors'].unique()) | |
| cruise=st.radio("Cruise",[True,False]) | |
| sound=st.radio("Sound",[True,False]) | |
| leather=st.radio("Leather",[True,False]) | |
| if st.button("Predict"): | |
| pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather) | |
| st.write("Price: $",round(pred[0],2)) | |