Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding: utf-8
|
| 3 |
+
|
| 4 |
+
# # Araba Fiyatı Tahmin Eden Model ve Deployment
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
#import libraries
|
| 8 |
+
import pandas as pd
|
| 9 |
+
from sklearn.model_selection import train_test_split
|
| 10 |
+
from sklearn.linear_model import LinearRegression
|
| 11 |
+
from sklearn.metrics import r2_score,mean_squared_error
|
| 12 |
+
from sklearn.pipeline import Pipeline
|
| 13 |
+
from sklearn.compose import ColumnTransformer
|
| 14 |
+
from sklearn.preprocessing import StandardScaler,OneHotEncoder
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
#Load data
|
| 19 |
+
df=pd.read_excel('cars.xls')
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
X=df.drop('Price',axis=1)
|
| 28 |
+
y=df[['Price']]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
X_train,X_test,y_train,y_test=train_test_split(X,y,
|
| 33 |
+
test_size=0.2,
|
| 34 |
+
random_state=42)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
preproccer=ColumnTransformer(transformers=[('num',StandardScaler(),
|
| 40 |
+
['Mileage','Cylinder','Liter','Doors']),
|
| 41 |
+
('cat',OneHotEncoder(),['Make','Model','Trim','Type'])])
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
model=LinearRegression()
|
| 47 |
+
pipe=Pipeline(steps=[('preprocessor',preproccer),
|
| 48 |
+
('model',model)])
|
| 49 |
+
pipe.fit(X_train,y_train)
|
| 50 |
+
y_pred=pipe.predict(X_test)
|
| 51 |
+
mean_squared_error(y_test,y_pred)**0.5,r2_score(y_test,y_pred)
|
| 52 |
+
|
| 53 |
+
import streamlit as st
|
| 54 |
+
def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather):
|
| 55 |
+
input_data=pd.DataFrame({
|
| 56 |
+
'Make':[make],
|
| 57 |
+
'Model':[model],
|
| 58 |
+
'Trim':[trim],
|
| 59 |
+
'Mileage':[mileage],
|
| 60 |
+
'Type':[car_type],
|
| 61 |
+
'Car_type':[car_type],
|
| 62 |
+
'Cylinder':[cylinder],
|
| 63 |
+
'Liter':[liter],
|
| 64 |
+
'Doors':[doors],
|
| 65 |
+
'Cruise':[cruise],
|
| 66 |
+
'Sound':[sound],
|
| 67 |
+
'Leather':[leather]
|
| 68 |
+
})
|
| 69 |
+
prediction=pipe.predict(input_data)[0]
|
| 70 |
+
return prediction
|
| 71 |
+
st.title("Car Price Prediction:red_car:@SalihaRanaUzun")
|
| 72 |
+
st.write("Enter the Car Details to predict its price")
|
| 73 |
+
make=st.selectbox("Make",df['Make'].unique())
|
| 74 |
+
model=st.selectbox("Model",df[df['Make']==make]['Model'].unique())
|
| 75 |
+
trim=st.selectbox("Trim",df[(df['Make']==make) & (df['Model']==model)]['Trim'].unique())
|
| 76 |
+
mileage=st.number_input("Mileage",200,60000)
|
| 77 |
+
car_type=st.selectbox("Type",df[(df['Make']==make) & (df['Model']==model) & (df['Trim']==trim )]['Type'].unique())
|
| 78 |
+
cylinder=st.selectbox("Cylinder",df['Cylinder'].unique())
|
| 79 |
+
liter=st.number_input("Liter",1,6)
|
| 80 |
+
doors=st.selectbox("Doors",df['Doors'].unique())
|
| 81 |
+
cruise=st.radio("Cruise",[True,False])
|
| 82 |
+
sound=st.radio("Sound",[True,False])
|
| 83 |
+
leather=st.radio("Leather",[True,False])
|
| 84 |
+
if st.button("Predict"):
|
| 85 |
+
pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)
|
| 86 |
+
|
| 87 |
+
st.write("Price:$ :red_car: $",round(pred[0],2))
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
|