import gradio as gr from transformers import ViTForImageClassification, ViTImageProcessor from PIL import Image # Load model from Hugging Face Hub model_name = "wambugu71/crop_leaf_diseases_vit" model = ViTForImageClassification.from_pretrained(model_name) processor = ViTImageProcessor.from_pretrained(model_name) # Prediction function def predict(image): inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) predicted_idx = outputs.logits.argmax(-1).item() predicted_label = model.config.id2label[predicted_idx] return f"🌱 Predicted Disease: {predicted_label}" # Create Gradio interface iface = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs="text", title="🌾 AI-Powered Crop Disease Detector", description="Upload a leaf image of Corn, Potato, Rice, or Wheat to get the predicted disease." ) iface.launch()