import gradio as gr import numpy as np import torch import torchaudio import transformers import spaces from huggingface_hub import hf_hub_download fe_path = hf_hub_download("sarulab-speech/sidon-v0.1", filename="feature_extractor_cuda.pt") decoder_path = hf_hub_download("sarulab-speech/sidon-v0.1", filename="decoder_cuda.pt") preprocessor = transformers.SeamlessM4TFeatureExtractor.from_pretrained( "facebook/w2v-bert-2.0" ) @spaces.GPU @torch.inference_mode() def denoise_speech(audio): fe = torch.jit.load(fe_path,map_location='cuda').to('cuda') decoder = torch.jit.load(decoder_path,map_location='cuda').to('cuda') if audio is None: return None sample_rate, waveform = audio waveform = 0.9 * (waveform / np.abs(waveform).max()) target_n_samples = int(48_000/sample_rate* waveform.shape[0]) # Ensure waveform is a tensor if not isinstance(waveform, torch.Tensor): waveform = torch.tensor(waveform, dtype=torch.float32) # If stereo, convert to mono if waveform.ndim > 1 and waveform.shape[0] > 1: waveform = torch.mean(waveform, dim=1) # Add a batch dimension waveform = waveform.view(1, -1) wav = torchaudio.functional.highpass_biquad(waveform, sample_rate, 50) wav_16k = torchaudio.functional.resample(wav, sample_rate, 16_000) restoreds = [] features =[] feature_cache = None wav_16k = torch.nn.functional.pad(wav_16k,(0,24000)) for chunk in wav_16k.view(-1).split(16000 * 96): inputs = preprocessor( torch.nn.functional.pad(chunk, (160, 160)), return_tensors="pt" ).to('cpu') with torch.inference_mode(): feature = fe(inputs["input_features"].to("cuda"))["last_hidden_state"] if feature_cache is not None: feature = torch.cat([feature_cache,feature],dim=1) restoreds.append(decoder(feature.transpose(1,2)).view(-1)[:-960]) feature_cache = feature[:,-1:] restored_wav = torch.cat(restoreds,dim=0) return 48_000, (restored_wav.view(-1, 1).cpu().numpy() * 32767).astype(np.int16)[:target_n_samples] # Create the Gradio interface iface = gr.Interface( fn=denoise_speech, inputs=gr.Audio(type="numpy", label="Noisy Speech"), outputs=gr.Audio(type="numpy", label="Restored Speech"), title="Sidon Speech Restoration", description="Upload a noisy audio file and the Sidon will restore it.", ) if __name__ == "__main__": iface.launch()