satyahaha commited on
Commit
29a3268
Β·
1 Parent(s): cee098c
Files changed (2) hide show
  1. app.py +259 -0
  2. requirements.txt +10 -0
app.py ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import math
4
+ import gradio as gr
5
+ from PIL import Image
6
+ from transformers import (
7
+ GPT2LMHeadModel, GPT2Tokenizer,
8
+ AutoTokenizer, AutoModelForSequenceClassification,
9
+ AutoImageProcessor, AutoModelForImageClassification,
10
+ logging
11
+ )
12
+ from openai import OpenAI
13
+ from groq import Groq
14
+ import cv2
15
+ import numpy as np
16
+ import torch.nn as nn
17
+ import librosa
18
+
19
+ logging.set_verbosity_error()
20
+
21
+ # -----------------------------
22
+ # API Keys (set via Space secrets)
23
+ # -----------------------------
24
+ HF_TOKEN = os.getenv("HF_TOKEN")
25
+ GROQ_API_KEY = os.getenv("GROQ_API_KEY")
26
+ client = Groq(api_key=GROQ_API_KEY)
27
+
28
+ device = "cuda" if torch.cuda.is_available() else "cpu"
29
+
30
+ # -----------------------------
31
+ # TEXT DETECTION
32
+ # -----------------------------
33
+ def run_hf_detector(text, model_id="roberta-base-openai-detector"):
34
+ tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
35
+ model = AutoModelForSequenceClassification.from_pretrained(model_id, token=HF_TOKEN).to(device)
36
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
37
+ with torch.no_grad():
38
+ outputs = model(**inputs)
39
+ probs = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().numpy()[0]
40
+ human_score, ai_score = float(probs[0]), float(probs[1])
41
+ label = "AI-generated" if ai_score > human_score else "Human-generated"
42
+ return {"ai_score": ai_score, "human_score": human_score, "hf_label": label}
43
+
44
+ def calculate_perplexity(text):
45
+ model = GPT2LMHeadModel.from_pretrained("gpt2").to(device)
46
+ tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
47
+ encodings = tokenizer(text, return_tensors="pt").to(device)
48
+ max_length = model.config.n_positions
49
+ if encodings.input_ids.size(1) > max_length:
50
+ encodings.input_ids = encodings.input_ids[:, :max_length]
51
+ encodings.attention_mask = encodings.attention_mask[:, :max_length]
52
+ with torch.no_grad():
53
+ outputs = model(**encodings, labels=encodings.input_ids)
54
+ loss = outputs.loss
55
+ perplexity = math.exp(loss.item())
56
+ label = "AI-generated" if perplexity < 60 else "Human-generated"
57
+ return {"perplexity": perplexity, "perplexity_label": label}
58
+
59
+ def generate_text_explanation(text, ai_score, human_score):
60
+ decision = "AI-generated" if ai_score > human_score else "Human-generated"
61
+ prompt = f"""
62
+ You are an AI text analysis expert. Explain concisely why this text was classified as '{decision}'.
63
+ Text: "{text}"
64
+ Explanation:"""
65
+ response = client.chat.completions.create(
66
+ model="gemma2-9b-it",
67
+ messages=[{"role":"user","content":prompt}],
68
+ max_tokens=150,
69
+ temperature=0.7
70
+ )
71
+ return response.choices[0].message.content.strip()
72
+
73
+ def analyze_text(text):
74
+ try:
75
+ hf_out = run_hf_detector(text)
76
+ hf_out["ai_score"] = float(hf_out["ai_score"])
77
+ hf_out["human_score"] = float(hf_out["human_score"])
78
+ diff = abs(hf_out["ai_score"] - hf_out["human_score"])
79
+ confidence = "High" if diff>0.8 else "Medium" if diff>=0.3 else "Low"
80
+ perp_out = calculate_perplexity(text)
81
+ explanation = generate_text_explanation(text, hf_out["ai_score"], hf_out["human_score"])
82
+ return {"ai_score": hf_out["ai_score"], "confidence": confidence, "explanation": explanation}
83
+ except:
84
+ return {"ai_score":0.0,"confidence":"Low","explanation":"Error analyzing text."}
85
+
86
+ # -----------------------------
87
+ # IMAGE DETECTION
88
+ # -----------------------------
89
+ image_model_name = "Ateeqq/ai-vs-human-image-detector"
90
+ image_processor = AutoImageProcessor.from_pretrained(image_model_name)
91
+ image_model = AutoModelForImageClassification.from_pretrained(image_model_name)
92
+ image_model.eval()
93
+
94
+ def generate_image_explanation(ai_probability,human_probability,confidence):
95
+ prompt = f"""
96
+ You are an AI image analysis expert.
97
+ AI: {ai_probability:.4f}, Human: {human_probability:.4f}, Confidence: {confidence}
98
+ Explain in 1-2 sentences why it was classified as {'AI-generated' if ai_probability>human_probability else 'Human-generated'}.
99
+ """
100
+ response = client.chat.completions.create(
101
+ model="llama-3.3-70b-versatile",
102
+ messages=[{"role":"user","content":prompt}],
103
+ temperature=0.6
104
+ )
105
+ return response.choices[0].message.content.strip()
106
+
107
+ def analyze_image(image):
108
+ image = image.convert("RGB")
109
+ inputs = image_processor(images=image, return_tensors="pt")
110
+ with torch.no_grad():
111
+ logits = image_model(**inputs).logits
112
+ probabilities = torch.nn.functional.softmax(logits/6.0, dim=-1)[0]
113
+ ai_prob, human_prob = probabilities[0].item(), probabilities[1].item()
114
+ diff = abs(ai_prob-human_prob)
115
+ confidence = "High" if diff>=0.7 else "Medium" if diff>=0.3 else "Low"
116
+ explanation = generate_image_explanation(ai_prob, human_prob, confidence)
117
+ return {"ai_probability": ai_prob, "confidence": confidence, "explanation": explanation}
118
+
119
+ # -----------------------------
120
+ # VIDEO DETECTION
121
+ # -----------------------------
122
+ def extract_frames(video_path, frame_rate=1):
123
+ cap = cv2.VideoCapture(video_path)
124
+ fps = cap.get(cv2.CAP_PROP_FPS)
125
+ interval = int(fps*frame_rate)
126
+ frames,count = [],0
127
+ while cap.isOpened():
128
+ ret,frame = cap.read()
129
+ if not ret: break
130
+ if count%interval==0: frames.append(Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)))
131
+ count+=1
132
+ cap.release()
133
+ return frames
134
+
135
+ def analyze_video(video_path):
136
+ frames = extract_frames(video_path, frame_rate=1)
137
+ if not frames: return {"error":"No frames extracted."}
138
+ ai_probs,human_probs = [],[]
139
+ for img in frames:
140
+ inputs = image_processor(images=img, return_tensors="pt")
141
+ with torch.no_grad(): logits = image_model(**inputs).logits
142
+ probs = torch.nn.functional.softmax(logits, dim=-1)[0]
143
+ ai_probs.append(probs[0].item())
144
+ human_probs.append(probs[1].item())
145
+ avg_ai,avg_human = float(np.mean(ai_probs)), float(np.mean(human_probs))
146
+ diff = abs(avg_ai-avg_human)
147
+ confidence = "High" if diff>=0.7 else "Medium" if diff>=0.3 else "Low"
148
+ prompt = f"Video processed {len(frames)} frames. AI: {avg_ai:.4f}, Human: {avg_human:.4f}. Confidence: {confidence}. Explain why it was {'AI-generated' if avg_ai>avg_human else 'Human-generated'}."
149
+ response = client.chat.completions.create(model="llama-3.3-70b-versatile", messages=[{"role":"user","content":prompt}], temperature=0.6)
150
+ explanation = response.choices[0].message.content.strip()
151
+ return {"ai_probability":avg_ai,"confidence":confidence,"explanation":explanation}
152
+
153
+ # -----------------------------
154
+ # AUDIO DETECTION
155
+ # -----------------------------
156
+ class AudioCNNRNN(nn.Module):
157
+ def __init__(self,lstm_hidden_size=128,num_classes=2):
158
+ super().__init__()
159
+ self.cnn = nn.Sequential(
160
+ nn.Conv2d(1,32,3,1,1), nn.ReLU(), nn.MaxPool2d(2),
161
+ nn.Conv2d(32,64,3,1,1), nn.ReLU(), nn.MaxPool2d(2)
162
+ )
163
+ self.lstm = nn.LSTM(input_size=64, hidden_size=lstm_hidden_size,batch_first=True)
164
+ self.fc = nn.Linear(lstm_hidden_size,num_classes)
165
+ def forward(self,x):
166
+ b,s,c,h,w = x.size()
167
+ x = self.cnn(x.view(b*s,c,h,w)).mean(dim=[2,3]).view(b,s,-1)
168
+ out,_ = self.lstm(x)
169
+ return self.fc(out[:,-1,:])
170
+
171
+ def extract_mel_spectrogram(audio_path, sr=16000, n_mels=64):
172
+ waveform,_ = librosa.load(audio_path,sr=sr)
173
+ mel_spec = librosa.feature.melspectrogram(waveform,sr,n_mels=n_mels)
174
+ return librosa.power_to_db(mel_spec,ref=np.max)
175
+
176
+ def slice_spectrogram(mel_spec,slice_size=128,step=64):
177
+ return [mel_spec[:,i:i+slice_size] for i in range(0, mel_spec.shape[1]-slice_size, step)]
178
+
179
+ def analyze_audio(audio_path):
180
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
181
+ model = AudioCNNRNN().to(device).eval()
182
+ mel_spec = extract_mel_spectrogram(audio_path)
183
+ slices = slice_spectrogram(mel_spec)
184
+ if not slices: return {"ai_probability":0,"confidence":"Low","explanation":"Audio too short."}
185
+ data = torch.stack([torch.tensor(s).unsqueeze(0) for s in slices]).unsqueeze(0).to(device)
186
+ with torch.no_grad(): logits = model(data)
187
+ probabilities = torch.nn.functional.softmax(logits/3.0, dim=-1)[0]
188
+ ai_prob,human_prob = probabilities[0].item(),probabilities[1].item()
189
+ diff = abs(ai_prob-human_prob)
190
+ confidence = "High" if diff>=0.7 else "Medium" if diff>=0.3 else "Low"
191
+ prompt = f"Audio AI:{ai_prob:.4f} Human:{human_prob:.4f} Confidence:{confidence}. Explain reasoning."
192
+ response = client.chat.completions.create(model="llama-3.3-70b-versatile", messages=[{"role":"user","content":prompt}], temperature=0.6)
193
+ return {"ai_probability":ai_prob,"confidence":confidence,"explanation":response.choices[0].message.content.strip()}
194
+
195
+ # -----------------------------
196
+ # GRADIO UI
197
+ # -----------------------------
198
+ def format_text_results(text):
199
+ res = analyze_text(text)
200
+ conf_map = {"High":"🟒 High","Medium":"🟑 Medium","Low":"πŸ”΄ Low"}
201
+ return f"### Text Detection\nAI Score: {res['ai_score']:.4f}\nConfidence: {conf_map.get(res['confidence'],res['confidence'])}\nExplanation: {res['explanation']}"
202
+
203
+ def format_image_results(image):
204
+ res = analyze_image(image)
205
+ return f"### Image Detection\nAI Probability: {res['ai_probability']:.4f}\nConfidence: {res['confidence']}\nExplanation: {res['explanation']}"
206
+
207
+ def format_video_results(video_file):
208
+ res = analyze_video(video_file)
209
+ if "error" in res: return res["error"]
210
+ return f"### Video Detection\nAI Probability: {res['ai_probability']:.4f}\nConfidence: {res['confidence']}\nExplanation: {res['explanation']}"
211
+
212
+ def format_audio_results(audio_file):
213
+ res = analyze_audio(audio_file)
214
+ return f"### Audio Detection\nAI Probability: {res['ai_probability']:.4f}\nConfidence: {res['confidence']}\nExplanation: {res['explanation']}"
215
+
216
+ with gr.Blocks() as app:
217
+ home = gr.Column(visible=True)
218
+ with home:
219
+ gr.Markdown("## AI Multi-Modal Detector")
220
+ with gr.Row():
221
+ t_btn = gr.Button("Text")
222
+ i_btn = gr.Button("Image")
223
+ v_btn = gr.Button("Video")
224
+ a_btn = gr.Button("Audio")
225
+
226
+ text_page = gr.Column(visible=False)
227
+ with text_page:
228
+ inp = gr.Textbox(lines=5, placeholder="Paste text...", label="Text")
229
+ out = gr.Markdown()
230
+ gr.Button("Analyze").click(format_text_results, inputs=inp, outputs=out)
231
+ gr.Button("Back").click(lambda: (gr.update(visible=True), gr.update(visible=False)), outputs=[home,text_page])
232
+
233
+ image_page = gr.Column(visible=False)
234
+ with image_page:
235
+ inp = gr.Image(type="pil")
236
+ out = gr.Markdown()
237
+ gr.Button("Analyze").click(format_image_results, inputs=inp, outputs=out)
238
+ gr.Button("Back").click(lambda: (gr.update(visible=True), gr.update(visible=False)), outputs=[home,image_page])
239
+
240
+ video_page = gr.Column(visible=False)
241
+ with video_page:
242
+ inp = gr.Video()
243
+ out = gr.Markdown()
244
+ gr.Button("Analyze").click(format_video_results, inputs=inp, outputs=out)
245
+ gr.Button("Back").click(lambda: (gr.update(visible=True), gr.update(visible=False)), outputs=[home,video_page])
246
+
247
+ audio_page = gr.Column(visible=False)
248
+ with audio_page:
249
+ inp = gr.Audio(type="filepath")
250
+ out = gr.Markdown()
251
+ gr.Button("Analyze").click(format_audio_results, inputs=inp, outputs=out)
252
+ gr.Button("Back").click(lambda: (gr.update(visible=True), gr.update(visible=False)), outputs=[home,audio_page])
253
+
254
+ t_btn.click(lambda: (gr.update(visible=False), gr.update(visible=True)), outputs=[home,text_page])
255
+ i_btn.click(lambda: (gr.update(visible=False), gr.update(visible=True)), outputs=[home,image_page])
256
+ v_btn.click(lambda: (gr.update(visible=False), gr.update(visible=True)), outputs=[home,video_page])
257
+ a_btn.click(lambda: (gr.update(visible=False), gr.update(visible=True)), outputs=[home,audio_page])
258
+
259
+ app.launch()
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ gradio
2
+ torch
3
+ torchvision
4
+ transformers
5
+ Pillow
6
+ opencv-python
7
+ librosa
8
+ numpy
9
+ openai
10
+ groq