Update app.py
Browse files
app.py
CHANGED
|
@@ -1,77 +1,25 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
-
import
|
| 4 |
-
import cv2
|
| 5 |
-
import numpy as np
|
| 6 |
-
from mmdet.apis import DetInferencer
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
return "Model loaded."
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
if inferencer is None:
|
| 26 |
-
return "Please load a model first.", None
|
| 27 |
-
temp_dir = tempfile.mkdtemp()
|
| 28 |
-
cap = cv2.VideoCapture(video)
|
| 29 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 30 |
-
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 31 |
-
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 32 |
-
out_path = os.path.join(temp_dir, "result.mp4")
|
| 33 |
-
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
| 34 |
-
out = cv2.VideoWriter(out_path, fourcc, fps, (w, h))
|
| 35 |
-
while True:
|
| 36 |
-
ret, frame = cap.read()
|
| 37 |
-
if not ret:
|
| 38 |
-
break
|
| 39 |
-
result = inferencer(frame)
|
| 40 |
-
vis = result["visualization"]
|
| 41 |
-
if isinstance(vis, list):
|
| 42 |
-
vis = vis[0]
|
| 43 |
-
out.write(vis[:,:,::-1])
|
| 44 |
-
cap.release()
|
| 45 |
-
out.release()
|
| 46 |
-
return "", out_path
|
| 47 |
-
|
| 48 |
-
def ui():
|
| 49 |
-
with gr.Blocks() as demo:
|
| 50 |
-
gr.Markdown("# SpecDETR Demo: Image and Video Detection\nUpload your config (.py) and checkpoint (.pth) to start.")
|
| 51 |
-
with gr.Row():
|
| 52 |
-
config = gr.File(label="Config File (.py)")
|
| 53 |
-
checkpoint = gr.File(label="Checkpoint (.pth)")
|
| 54 |
-
load_btn = gr.Button("Load Model")
|
| 55 |
-
load_status = gr.Textbox(label="Status", interactive=False)
|
| 56 |
-
load_btn.click(load_model, inputs=[config, checkpoint], outputs=load_status)
|
| 57 |
-
with gr.Tab("Image"):
|
| 58 |
-
img_input = gr.Image(type="numpy")
|
| 59 |
-
img_output = gr.Image()
|
| 60 |
-
img_btn = gr.Button("Detect on Image")
|
| 61 |
-
img_status = gr.Textbox(label="Status", interactive=False)
|
| 62 |
-
img_btn.click(infer_image, inputs=img_input, outputs=[img_status, img_output])
|
| 63 |
-
with gr.Tab("Video"):
|
| 64 |
-
vid_input = gr.Video()
|
| 65 |
-
vid_output = gr.Video()
|
| 66 |
-
vid_btn = gr.Button("Detect on Video")
|
| 67 |
-
vid_status = gr.Textbox(label="Status", interactive=False)
|
| 68 |
-
vid_btn.click(infer_video, inputs=vid_input, outputs=[vid_status, vid_output])
|
| 69 |
-
return demo
|
| 70 |
-
|
| 71 |
-
demo = ui()
|
| 72 |
-
|
| 73 |
-
def main():
|
| 74 |
-
demo.launch()
|
| 75 |
|
| 76 |
if __name__ == "__main__":
|
| 77 |
-
|
|
|
|
| 1 |
+
import sys, os
|
| 2 |
+
sys.path.append(os.path.abspath(os.path.dirname(__file__)))
|
| 3 |
import gradio as gr
|
| 4 |
import os
|
| 5 |
+
from inference_custom import main as samwise_infer
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
def inference(video, prompt):
|
| 8 |
+
output_path = "output_segmented.mp4"
|
| 9 |
+
# 'video' is a file path string provided by Gradio
|
| 10 |
+
samwise_infer(video, prompt, output_path, "models/samwise.pth")
|
| 11 |
+
return output_path
|
|
|
|
| 12 |
|
| 13 |
+
demo = gr.Interface(
|
| 14 |
+
fn=inference,
|
| 15 |
+
inputs=[
|
| 16 |
+
gr.Video(label="Upload Video"),
|
| 17 |
+
gr.Textbox(label="Text Prompt", placeholder="Describe what to segment")
|
| 18 |
+
],
|
| 19 |
+
outputs=gr.Video(label="Segmented Output"),
|
| 20 |
+
title="SAMWISE Video Segmentation",
|
| 21 |
+
description="Upload a video and enter a prompt to segment objects with SAMWISE."
|
| 22 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
if __name__ == "__main__":
|
| 25 |
+
demo.launch()
|