Update src/streamlit_app.py
Browse files- src/streamlit_app.py +435 -30
src/streamlit_app.py
CHANGED
|
@@ -2,39 +2,444 @@ import altair as alt
|
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
"""
|
| 7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
If
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
| 14 |
"""
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
"
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
import streamlit as st
|
| 5 |
+
import os
|
| 6 |
+
import io
|
| 7 |
+
import json
|
| 8 |
+
import numpy as np
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import requests
|
| 11 |
+
from segments import SegmentsClient
|
| 12 |
|
| 13 |
"""
|
| 14 |
+
# Copy images from one frame to other frames in the same sample
|
| 15 |
+
|
| 16 |
+
This HF-application first updates selected frames for a given sample UUID by
|
| 17 |
+
replacing each annotation’s id with its track_id and updating the segmentation bitmap
|
| 18 |
+
accordingly (to avoid potential conflicts). Only the frames specified by the source or target
|
| 19 |
+
frame numbers are processed.
|
| 20 |
+
|
| 21 |
+
Then it copies annotations from one source frame to one or more target frames. When copying:
|
| 22 |
+
- The annotations from the source frame are merged with the target's annotations,
|
| 23 |
+
adding only those from the source that are not already present (based on id).
|
| 24 |
+
- The segmentation bitmap is merged: for each pixel, if the target's r-value is 0, the corresponding
|
| 25 |
+
r-value from the source is used.
|
| 26 |
+
- After merging, the bitmap is scanned for unique r-values and any annotation in the target
|
| 27 |
+
frame whose id is not present in these unique values is deleted.
|
| 28 |
+
Finally, the updated datalabel is uploaded.
|
| 29 |
|
| 30 |
+
**Important**
|
| 31 |
+
If a loop is detected in any frame’s id mappings, or if any track_id in the
|
| 32 |
+
selected frames is greater than 255, no changes are made and nothing is uploaded to Segments.ai.
|
| 33 |
+
For each track_id higher than 255, the warning will include:
|
| 34 |
+
- Which track_id is too high and the first frame (1-indexed) where it appears.
|
| 35 |
+
- The lowest available id values (searched across all frames) – one for each offending track_id.
|
| 36 |
+
The user must resolve these issues before updating.
|
| 37 |
|
|
|
|
| 38 |
"""
|
| 39 |
|
| 40 |
+
# ---------------- Utility Functions ----------------
|
| 41 |
+
|
| 42 |
+
def download_image(url: str) -> Image.Image:
|
| 43 |
+
"""Download an image from the given URL and return a PIL Image in RGB mode."""
|
| 44 |
+
resp = requests.get(url)
|
| 45 |
+
resp.raise_for_status()
|
| 46 |
+
return Image.open(io.BytesIO(resp.content)).convert("RGB")
|
| 47 |
+
|
| 48 |
+
def topological_sort(mapping: dict) -> list:
|
| 49 |
+
"""
|
| 50 |
+
Given a mapping (original id -> new id) for non-trivial changes,
|
| 51 |
+
compute a processing order so that if a new id exists among the original ids,
|
| 52 |
+
it is processed first.
|
| 53 |
+
Returns the order as a list, or None if a cycle is detected.
|
| 54 |
+
"""
|
| 55 |
+
nodes = set(mapping.keys())
|
| 56 |
+
graph = {}
|
| 57 |
+
for x in mapping:
|
| 58 |
+
new_id = mapping[x]
|
| 59 |
+
if new_id in nodes:
|
| 60 |
+
graph.setdefault(new_id, set()).add(x)
|
| 61 |
+
visited = {}
|
| 62 |
+
result = []
|
| 63 |
+
cycle_found = False
|
| 64 |
+
|
| 65 |
+
def dfs(node):
|
| 66 |
+
nonlocal cycle_found
|
| 67 |
+
if cycle_found:
|
| 68 |
+
return
|
| 69 |
+
if node in visited:
|
| 70 |
+
if visited[node] == "visiting":
|
| 71 |
+
cycle_found = True
|
| 72 |
+
return
|
| 73 |
+
visited[node] = "visiting"
|
| 74 |
+
for neighbor in graph.get(node, set()):
|
| 75 |
+
dfs(neighbor)
|
| 76 |
+
visited[node] = "visited"
|
| 77 |
+
result.append(node)
|
| 78 |
+
|
| 79 |
+
for node in nodes:
|
| 80 |
+
if node not in visited:
|
| 81 |
+
dfs(node)
|
| 82 |
+
if cycle_found:
|
| 83 |
+
return None
|
| 84 |
+
return result[::-1]
|
| 85 |
+
|
| 86 |
+
def detect_cycle(mapping: dict):
|
| 87 |
+
"""
|
| 88 |
+
For each chain in the mapping (original id -> new id), follow it.
|
| 89 |
+
If a cycle is detected, return the first conflicting mapping as a tuple (original, new).
|
| 90 |
+
Otherwise, return None.
|
| 91 |
+
"""
|
| 92 |
+
for orig in mapping:
|
| 93 |
+
visited = set()
|
| 94 |
+
current = orig
|
| 95 |
+
while current in mapping:
|
| 96 |
+
if current in visited:
|
| 97 |
+
return (orig, mapping[orig])
|
| 98 |
+
visited.add(current)
|
| 99 |
+
current = mapping[current]
|
| 100 |
+
return None
|
| 101 |
+
|
| 102 |
+
def parse_frame_numbers(frame_str: str):
|
| 103 |
+
"""
|
| 104 |
+
Parse a string representing frame numbers.
|
| 105 |
+
Accepts comma-separated values and ranges (e.g., "2,4-6,8").
|
| 106 |
+
Returns a list of integers (1-indexed).
|
| 107 |
+
"""
|
| 108 |
+
result = []
|
| 109 |
+
for part in frame_str.split(","):
|
| 110 |
+
part = part.strip()
|
| 111 |
+
if not part:
|
| 112 |
+
continue
|
| 113 |
+
if "-" in part:
|
| 114 |
+
tokens = part.split("-")
|
| 115 |
+
start = int(tokens[0].strip())
|
| 116 |
+
end = int(tokens[1].strip())
|
| 117 |
+
result.extend(range(start, end+1))
|
| 118 |
+
else:
|
| 119 |
+
result.append(int(part))
|
| 120 |
+
return result
|
| 121 |
+
|
| 122 |
+
# ---------------- Update Ids and Bitmaps ----------------
|
| 123 |
+
|
| 124 |
+
def update_frame_annotations_and_bitmap(client, frame: dict) -> (int, bool, tuple):
|
| 125 |
+
"""
|
| 126 |
+
For a given frame, update annotations (set id = track_id) and update the segmentation bitmap.
|
| 127 |
+
Only non-trivial mappings (where original id != track_id) are processed.
|
| 128 |
+
The bitmap's R channel is updated accordingly.
|
| 129 |
+
|
| 130 |
+
IMPORTANT: If a loop is detected in the mapping, the function returns immediately without
|
| 131 |
+
modifying any values in the frame.
|
| 132 |
+
|
| 133 |
+
Returns a tuple:
|
| 134 |
+
(collision_count, cycle_detected, conflict_pair)
|
| 135 |
+
"""
|
| 136 |
+
annotations = frame.get("annotations", [])
|
| 137 |
+
mapping = {}
|
| 138 |
+
original_ids = set()
|
| 139 |
+
for ann in annotations:
|
| 140 |
+
try:
|
| 141 |
+
orig_id = int(ann.get("id"))
|
| 142 |
+
new_id = int(ann.get("track_id"))
|
| 143 |
+
if orig_id != new_id:
|
| 144 |
+
mapping[orig_id] = new_id
|
| 145 |
+
original_ids.add(orig_id)
|
| 146 |
+
except (ValueError, TypeError):
|
| 147 |
+
continue
|
| 148 |
+
|
| 149 |
+
# Check for a cycle first. If a cycle is detected, do not modify the frame.
|
| 150 |
+
conflict = detect_cycle(mapping)
|
| 151 |
+
if conflict is not None:
|
| 152 |
+
return 0, True, conflict
|
| 153 |
+
|
| 154 |
+
collision_count = sum(1 for orig, new in mapping.items() if new in original_ids)
|
| 155 |
+
if mapping:
|
| 156 |
+
order = topological_sort(mapping)
|
| 157 |
+
if order is not None:
|
| 158 |
+
seg_info = frame.get("segmentation_bitmap", {})
|
| 159 |
+
seg_url = seg_info.get("url")
|
| 160 |
+
if seg_url:
|
| 161 |
+
try:
|
| 162 |
+
image = download_image(seg_url)
|
| 163 |
+
arr = np.array(image)
|
| 164 |
+
r_channel = arr[:, :, 0]
|
| 165 |
+
for orig in order:
|
| 166 |
+
new = mapping[orig]
|
| 167 |
+
r_channel[r_channel == orig] = new
|
| 168 |
+
arr[:, :, 0] = r_channel
|
| 169 |
+
updated_image = Image.fromarray(arr.astype(np.uint8))
|
| 170 |
+
buf = io.BytesIO()
|
| 171 |
+
updated_image.save(buf, format="PNG")
|
| 172 |
+
buf.seek(0)
|
| 173 |
+
base = os.path.basename(seg_url)
|
| 174 |
+
name, _ = os.path.splitext(base)
|
| 175 |
+
new_filename = f"{name}_updated.png"
|
| 176 |
+
asset = client.upload_asset(buf, filename=new_filename)
|
| 177 |
+
new_url = asset.url
|
| 178 |
+
frame.setdefault("segmentation_bitmap", {})["url"] = new_url
|
| 179 |
+
except Exception:
|
| 180 |
+
pass
|
| 181 |
+
# Update all annotations: set id = track_id.
|
| 182 |
+
for ann in annotations:
|
| 183 |
+
ann["id"] = ann.get("track_id")
|
| 184 |
+
return collision_count, False, None
|
| 185 |
+
|
| 186 |
+
def update_datalabel(sample_uuid: str, api_key: str, frames_to_update: set, labelset: str = "ground-truth") -> str:
|
| 187 |
+
"""
|
| 188 |
+
Retrieves the label for the given sample UUID, updates only the specified frames by modifying annotations
|
| 189 |
+
and updating the segmentation bitmap (via update_frame_annotations_and_bitmap), then uploads
|
| 190 |
+
the updated datalabel.
|
| 191 |
+
|
| 192 |
+
IMPORTANT: If a loop is detected in any processed frame, no changes are applied and nothing is uploaded.
|
| 193 |
+
The user must resolve the loop before updating Segments.ai.
|
| 194 |
+
|
| 195 |
+
frames_to_update: a set of 0-indexed frame indices that should be processed.
|
| 196 |
+
|
| 197 |
+
Returns a single summary line describing the operation with extra newlines for readability.
|
| 198 |
+
"""
|
| 199 |
+
client = SegmentsClient(api_key)
|
| 200 |
+
try:
|
| 201 |
+
label = client.get_label(sample_uuid)
|
| 202 |
+
except Exception as e:
|
| 203 |
+
return f"Error retrieving label for sample {sample_uuid}: {e}"
|
| 204 |
+
|
| 205 |
+
attributes = label.attributes.model_dump()
|
| 206 |
+
frames = attributes.get("frames", [])
|
| 207 |
+
|
| 208 |
+
total_collisions = 0
|
| 209 |
+
conflict_found = None
|
| 210 |
+
for i, frame in enumerate(frames):
|
| 211 |
+
if i in frames_to_update:
|
| 212 |
+
collisions, cycle, conflict_pair = update_frame_annotations_and_bitmap(client, frame)
|
| 213 |
+
if cycle:
|
| 214 |
+
conflict_found = conflict_pair
|
| 215 |
+
break
|
| 216 |
+
total_collisions += collisions
|
| 217 |
+
|
| 218 |
+
if conflict_found is not None:
|
| 219 |
+
return (f"Error: Cycle detected in annotation id mappings: original id {conflict_found[0]} -> new id {conflict_found[1]}.\n"
|
| 220 |
+
"Please resolve the loop before updating. No changes have been uploaded to Segments.ai.")
|
| 221 |
+
|
| 222 |
+
try:
|
| 223 |
+
client.update_label(sample_uuid, labelset=labelset, attributes=attributes)
|
| 224 |
+
except Exception as e:
|
| 225 |
+
return f"Error updating label on Segments.ai: {e}"
|
| 226 |
+
|
| 227 |
+
if total_collisions > 0:
|
| 228 |
+
summary = ("Updated annotation ids with track_ids and updated bitmap for the specified frames.\n"
|
| 229 |
+
"Collisions in ids were detected and resolved using logical processing.")
|
| 230 |
+
else:
|
| 231 |
+
summary = "Updated annotation ids with track_ids and updated bitmap for the specified frames."
|
| 232 |
+
|
| 233 |
+
return summary
|
| 234 |
+
|
| 235 |
+
# ---------------- Copy Annotations ----------------
|
| 236 |
+
|
| 237 |
+
def copy_annotations_to_frames(client, attributes: dict, sample_uuid: str, source_index: int, target_indexes: list) -> str:
|
| 238 |
+
"""
|
| 239 |
+
Copies annotations from the source frame to each target frame and merges the segmentation bitmap.
|
| 240 |
+
For each target frame:
|
| 241 |
+
- The annotations from the source frame are merged with the target's annotations.
|
| 242 |
+
Only those annotations from the source that are not already present (based on id) are added.
|
| 243 |
+
- The segmentation bitmap is merged: for each pixel, if the target's r-value is 0, the corresponding
|
| 244 |
+
r-value from the source is used.
|
| 245 |
+
- After merging, only annotations whose id appears in the set of unique r-values in the merged bitmap are kept.
|
| 246 |
+
After processing all target frames, the updated label is uploaded.
|
| 247 |
+
Returns a single summary line with extra newlines.
|
| 248 |
+
"""
|
| 249 |
+
frames = attributes.get("frames", [])
|
| 250 |
+
if source_index < 0 or source_index >= len(frames):
|
| 251 |
+
return f"Source frame index {source_index+1} is out of range."
|
| 252 |
+
source_frame = frames[source_index]
|
| 253 |
+
|
| 254 |
+
for tgt in target_indexes:
|
| 255 |
+
if tgt < 0 or tgt >= len(frames):
|
| 256 |
+
return f"Target frame index {tgt+1} is out of range."
|
| 257 |
+
target_frame = frames[tgt]
|
| 258 |
+
# Merge annotations: keep existing target annotations and add source annotations not already present.
|
| 259 |
+
target_annotations = target_frame.get("annotations", [])
|
| 260 |
+
source_annotations = source_frame.get("annotations", [])
|
| 261 |
+
existing_ids = {ann.get("id") for ann in target_annotations}
|
| 262 |
+
for ann in source_annotations:
|
| 263 |
+
if ann.get("id") not in existing_ids:
|
| 264 |
+
target_annotations.append(ann)
|
| 265 |
+
target_frame["annotations"] = target_annotations
|
| 266 |
+
|
| 267 |
+
# Merge segmentation bitmaps if both exist.
|
| 268 |
+
source_seg_url = source_frame.get("segmentation_bitmap", {}).get("url")
|
| 269 |
+
target_seg_url = target_frame.get("segmentation_bitmap", {}).get("url")
|
| 270 |
+
if source_seg_url and target_seg_url:
|
| 271 |
+
try:
|
| 272 |
+
source_img = download_image(source_seg_url)
|
| 273 |
+
target_img = download_image(target_seg_url)
|
| 274 |
+
arr_source = np.array(source_img)
|
| 275 |
+
arr_target = np.array(target_img)
|
| 276 |
+
if arr_source.shape != arr_target.shape:
|
| 277 |
+
# If shapes differ, simply use source bitmap.
|
| 278 |
+
target_frame["segmentation_bitmap"] = source_frame.get("segmentation_bitmap", {})
|
| 279 |
+
else:
|
| 280 |
+
# For pixels where the target's r-value is 0, use the source's pixel.
|
| 281 |
+
r_target = arr_target[:, :, 0]
|
| 282 |
+
mask = (r_target == 0)
|
| 283 |
+
merged_arr = arr_target.copy()
|
| 284 |
+
merged_arr[mask] = arr_source[mask]
|
| 285 |
+
# Upload the merged image.
|
| 286 |
+
merged_img = Image.fromarray(merged_arr.astype(np.uint8))
|
| 287 |
+
buf = io.BytesIO()
|
| 288 |
+
merged_img.save(buf, format="PNG")
|
| 289 |
+
buf.seek(0)
|
| 290 |
+
base = os.path.basename(target_seg_url)
|
| 291 |
+
name, _ = os.path.splitext(base)
|
| 292 |
+
new_filename = f"{name}_merged.png"
|
| 293 |
+
asset = client.upload_asset(buf, filename=new_filename)
|
| 294 |
+
merged_url = asset.url
|
| 295 |
+
target_frame.setdefault("segmentation_bitmap", {})["url"] = merged_url
|
| 296 |
+
# Determine unique r-values from the merged bitmap.
|
| 297 |
+
unique_vals = set(np.unique(merged_arr[:, :, 0])) - {0}
|
| 298 |
+
# Filter annotations: keep only those whose id (as int) is in unique_vals.
|
| 299 |
+
filtered_annotations = []
|
| 300 |
+
for ann in target_frame.get("annotations", []):
|
| 301 |
+
try:
|
| 302 |
+
ann_id = int(ann.get("id"))
|
| 303 |
+
if ann_id in unique_vals:
|
| 304 |
+
filtered_annotations.append(ann)
|
| 305 |
+
except (ValueError, TypeError):
|
| 306 |
+
pass
|
| 307 |
+
target_frame["annotations"] = filtered_annotations
|
| 308 |
+
except Exception:
|
| 309 |
+
# If any error occurs during merge, fall back to using the source segmentation bitmap.
|
| 310 |
+
target_frame["segmentation_bitmap"] = source_frame.get("segmentation_bitmap", {})
|
| 311 |
+
else:
|
| 312 |
+
# If one of the bitmaps is missing, use the source's.
|
| 313 |
+
target_frame["segmentation_bitmap"] = source_frame.get("segmentation_bitmap", {})
|
| 314 |
+
|
| 315 |
+
try:
|
| 316 |
+
client.update_label(sample_uuid, labelset="ground-truth", attributes=attributes)
|
| 317 |
+
except Exception as e:
|
| 318 |
+
return f"Error updating label on Segments.ai during annotation copy: {e}"
|
| 319 |
+
|
| 320 |
+
target_frames_str = ", ".join(str(tgt+1) for tgt in target_indexes)
|
| 321 |
+
return (f"Annotations merged from frame {source_index+1} into frames {target_frames_str}.\n"
|
| 322 |
+
f"Bitmap updated with merged r-values and annotations filtered accordingly.")
|
| 323 |
+
|
| 324 |
+
# ---------------------- Main UI ----------------------
|
| 325 |
+
|
| 326 |
+
st.title("Copy/Merge Annotations to Target Frames")
|
| 327 |
+
|
| 328 |
+
# Prompt user for API key as the first input (use type="password" for security if desired)
|
| 329 |
+
api_key = st.text_input("API Key", type="password")
|
| 330 |
+
sample_uuid = st.text_input("Sample UUID", value="")
|
| 331 |
+
source_frame_num = st.number_input("Source Frame Number (1-indexed)", min_value=1, step=1)
|
| 332 |
+
target_frames_str = st.text_input("Target Frame Numbers (comma-separated or range, e.g., '2,4-6')", value="2")
|
| 333 |
+
|
| 334 |
+
if "result" not in st.session_state:
|
| 335 |
+
st.session_state["result"] = ""
|
| 336 |
+
if "original_label" not in st.session_state:
|
| 337 |
+
st.session_state["original_label"] = ""
|
| 338 |
+
if "new_label" not in st.session_state:
|
| 339 |
+
st.session_state["new_label"] = ""
|
| 340 |
+
|
| 341 |
+
if st.button("Update and Copy Annotations"):
|
| 342 |
+
if not api_key:
|
| 343 |
+
st.error("Please enter your API Key.")
|
| 344 |
+
else:
|
| 345 |
+
client = SegmentsClient(api_key)
|
| 346 |
+
try:
|
| 347 |
+
orig_label_obj = client.get_label(sample_uuid)
|
| 348 |
+
except Exception as e:
|
| 349 |
+
st.error("Error retrieving original label: " + str(e))
|
| 350 |
+
orig_label_obj = None
|
| 351 |
+
if orig_label_obj is not None:
|
| 352 |
+
original_label_json = json.dumps(orig_label_obj.attributes.model_dump(), indent=4)
|
| 353 |
+
try:
|
| 354 |
+
target_frames_nums = parse_frame_numbers(target_frames_str)
|
| 355 |
+
except Exception as e:
|
| 356 |
+
st.error(f"Error parsing target frame numbers: {e}")
|
| 357 |
+
target_frames_nums = []
|
| 358 |
+
source_index = int(source_frame_num) - 1
|
| 359 |
+
target_indexes = [n - 1 for n in target_frames_nums]
|
| 360 |
+
# Only update the frames that are in the source or target list.
|
| 361 |
+
frames_to_update = set([source_index] + target_indexes)
|
| 362 |
+
|
| 363 |
+
# --- Warning Check: Verify no track_id > 255 in selected frames ---
|
| 364 |
+
attributes = orig_label_obj.attributes.model_dump()
|
| 365 |
+
frames = attributes.get("frames", [])
|
| 366 |
+
# Dictionary to record offending track_id -> first (1-indexed) frame number where it appears
|
| 367 |
+
track_id_warnings = {}
|
| 368 |
+
# Also accumulate id and track_id values in the selected frames (for reference)
|
| 369 |
+
selected_existing_values = set()
|
| 370 |
+
for i in sorted(frames_to_update):
|
| 371 |
+
if i < 0 or i >= len(frames):
|
| 372 |
+
continue
|
| 373 |
+
frame = frames[i]
|
| 374 |
+
for ann in frame.get("annotations", []):
|
| 375 |
+
try:
|
| 376 |
+
t_id = int(ann.get("track_id"))
|
| 377 |
+
selected_existing_values.add(t_id)
|
| 378 |
+
selected_existing_values.add(int(ann.get("id")))
|
| 379 |
+
if t_id > 255 and t_id not in track_id_warnings:
|
| 380 |
+
track_id_warnings[t_id] = i + 1 # record first appearance (1-indexed)
|
| 381 |
+
except Exception:
|
| 382 |
+
continue
|
| 383 |
+
|
| 384 |
+
# Compute available lowest values across ALL frames.
|
| 385 |
+
all_existing_values = set()
|
| 386 |
+
for frame in frames:
|
| 387 |
+
for ann in frame.get("annotations", []):
|
| 388 |
+
try:
|
| 389 |
+
t_id = int(ann.get("track_id"))
|
| 390 |
+
all_existing_values.add(t_id)
|
| 391 |
+
all_existing_values.add(int(ann.get("id")))
|
| 392 |
+
except Exception:
|
| 393 |
+
continue
|
| 394 |
+
num_offending = len(track_id_warnings)
|
| 395 |
+
lowest_available_list = []
|
| 396 |
+
candidate = 1
|
| 397 |
+
while len(lowest_available_list) < num_offending:
|
| 398 |
+
if candidate not in all_existing_values:
|
| 399 |
+
lowest_available_list.append(candidate)
|
| 400 |
+
candidate += 1
|
| 401 |
+
|
| 402 |
+
if track_id_warnings:
|
| 403 |
+
warning_message = "Warning: The following track_id values exceed 255:\n"
|
| 404 |
+
for t_id, frame_no in sorted(track_id_warnings.items()):
|
| 405 |
+
warning_message += f" - Track_id {t_id} appears first in frame {frame_no}.\n"
|
| 406 |
+
warning_message += "\nPlease change these values on Segments.ai before proceeding.\n"
|
| 407 |
+
warning_message += f"The lowest available id values (across all frames) are: {', '.join(map(str, lowest_available_list))}."
|
| 408 |
+
st.error(warning_message)
|
| 409 |
+
else:
|
| 410 |
+
update_summary = update_datalabel(sample_uuid, api_key, frames_to_update)
|
| 411 |
+
if update_summary.startswith("Error"):
|
| 412 |
+
st.error(update_summary)
|
| 413 |
+
else:
|
| 414 |
+
try:
|
| 415 |
+
# Retrieve the label after the update.
|
| 416 |
+
label = client.get_label(sample_uuid)
|
| 417 |
+
except Exception as e:
|
| 418 |
+
st.error("Error retrieving updated label: " + str(e))
|
| 419 |
+
label = None
|
| 420 |
+
if label is not None:
|
| 421 |
+
attributes = label.attributes.model_dump()
|
| 422 |
+
copy_summary = copy_annotations_to_frames(client, attributes, sample_uuid, source_index, target_indexes)
|
| 423 |
+
final_summary = update_summary + "\n\n" + copy_summary
|
| 424 |
+
st.session_state["result"] = final_summary
|
| 425 |
+
# Retrieve the final updated label.
|
| 426 |
+
try:
|
| 427 |
+
label_after = client.get_label(sample_uuid)
|
| 428 |
+
except Exception as e:
|
| 429 |
+
st.error("Error retrieving final updated label: " + str(e))
|
| 430 |
+
label_after = None
|
| 431 |
+
if label_after is not None:
|
| 432 |
+
new_label_json = json.dumps(label_after.attributes.model_dump(), indent=4)
|
| 433 |
+
st.session_state["original_label"] = original_label_json
|
| 434 |
+
st.session_state["new_label"] = new_label_json
|
| 435 |
+
|
| 436 |
+
if st.session_state["result"]:
|
| 437 |
+
st.text_area("Output", value=st.session_state["result"], height=150)
|
| 438 |
+
st.download_button("Download Original Label",
|
| 439 |
+
data=st.session_state["original_label"],
|
| 440 |
+
file_name=f"{sample_uuid}_original.json",
|
| 441 |
+
mime="application/json")
|
| 442 |
+
st.download_button("Download Updated Label",
|
| 443 |
+
data=st.session_state["new_label"],
|
| 444 |
+
file_name=f"{sample_uuid}_updated.json",
|
| 445 |
+
mime="application/json")
|