Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
from span_marker import SpanMarkerModel, SpanMarkerTrainer, SpanMarkerTrainingArguments
|
| 4 |
+
from datasets import Dataset
|
| 5 |
+
from sklearn.model_selection import train_test_split
|
| 6 |
+
|
| 7 |
+
def entrenar(jsonl_file):
|
| 8 |
+
# Cargar JSONL
|
| 9 |
+
raw = [json.loads(l) for l in jsonl_file.splitlines()]
|
| 10 |
+
|
| 11 |
+
dataset = []
|
| 12 |
+
for item in raw:
|
| 13 |
+
texto = item["data"]["texto"]
|
| 14 |
+
anot = item["annotations"][0]
|
| 15 |
+
|
| 16 |
+
entidades = []
|
| 17 |
+
for ent in anot["result"]:
|
| 18 |
+
entidades.append({
|
| 19 |
+
"start": ent["value"]["start"],
|
| 20 |
+
"end": ent["value"]["end"],
|
| 21 |
+
"label": ent["value"]["labels"][0]
|
| 22 |
+
})
|
| 23 |
+
|
| 24 |
+
dataset.append({"text": texto, "entities": entidades})
|
| 25 |
+
|
| 26 |
+
# Extraer etiquetas
|
| 27 |
+
labels = sorted(list({e["label"] for d in dataset for e in d["entities"]}))
|
| 28 |
+
labels.insert(0, "O") # obligatorio
|
| 29 |
+
|
| 30 |
+
# Train/test
|
| 31 |
+
train, test = train_test_split(dataset, test_size=0.2, random_state=42)
|
| 32 |
+
train_ds = Dataset.from_list(train)
|
| 33 |
+
test_ds = Dataset.from_list(test)
|
| 34 |
+
|
| 35 |
+
# Modelo
|
| 36 |
+
model = SpanMarkerModel.from_pretrained(
|
| 37 |
+
"PlanTL-GOB-ES/roberta-base-biomedical-clinical-es",
|
| 38 |
+
labels=labels
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# Argumentos
|
| 42 |
+
args = SpanMarkerTrainingArguments(
|
| 43 |
+
output_dir="modelo_final",
|
| 44 |
+
learning_rate=5e-5,
|
| 45 |
+
per_device_train_batch_size=2,
|
| 46 |
+
per_device_eval_batch_size=2,
|
| 47 |
+
num_train_epochs=3,
|
| 48 |
+
logging_steps=10,
|
| 49 |
+
save_strategy="epoch",
|
| 50 |
+
evaluation_strategy="epoch"
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# Entrenador
|
| 54 |
+
trainer = SpanMarkerTrainer(
|
| 55 |
+
model=model,
|
| 56 |
+
args=args,
|
| 57 |
+
train_dataset=train_ds,
|
| 58 |
+
eval_dataset=test_ds
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
trainer.train()
|
| 62 |
+
|
| 63 |
+
return "Entrenamiento completado. El modelo está en /modelo_final"
|
| 64 |
+
|
| 65 |
+
ui = gr.Interface(
|
| 66 |
+
fn=entrenar,
|
| 67 |
+
inputs=gr.File(label="Sube tu archivo JSONL exportado de Label Studio"),
|
| 68 |
+
outputs="text",
|
| 69 |
+
title="Entrenamiento NER Médico con SpanMarker"
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
ui.launch()
|