Spaces:
Running
on
Zero
Running
on
Zero
| import argparse | |
| import torch | |
| import os | |
| import json | |
| from tqdm import tqdm | |
| import shortuuid | |
| from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
| from cumo.conversation import conv_templates, SeparatorStyle | |
| from cumo.model.builder import load_pretrained_model | |
| from cumo.utils import disable_torch_init | |
| from cumo.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path | |
| from datasets import load_dataset, concatenate_datasets | |
| from cumo.eval.mmmu_utils.data_utils import load_yaml, save_json, CAT_SHORT2LONG | |
| from PIL import Image | |
| import math | |
| import re | |
| def process_single_sample(data): | |
| return {'id': data['id'], 'question': data['question'], 'options': data['options'], 'answer': data['answer'], 'image': data['decoded_image'], 'question_type': data['question_type']} | |
| def construct_prompt(sample): | |
| question = sample['question'] | |
| example = "" | |
| if sample['question_type'] == 'multiple-choice': | |
| start_chr = 'A' | |
| prediction_range = [] | |
| index2ans = {} | |
| for option in options: | |
| prediction_range.append(start_chr) | |
| example += f"({start_chr}) {option}\n" | |
| index2ans[start_chr] = option | |
| start_chr = chr(ord(start_chr) + 1) | |
| #empty_prompt_sample_structure = config['multi_choice_example_format'] | |
| #empty_prompt = empty_prompt_sample_structure.format(question, example) | |
| empty_prompt = question + '\n' + example + '\n' + "Answer with the option's letter from the given choices directly" | |
| res_dict = {} | |
| res_dict['index2ans'] = index2ans | |
| res_dict['correct_choice'] = sample['answer'] | |
| res_dict['empty_prompt'] = empty_prompt | |
| res_dict['final_input_prompt'] = empty_prompt | |
| elif sample['question_type'] == 'free_form': | |
| empty_prompt = question + '\n' + "Answer the question using a single word or phrase." | |
| res_dict = {} | |
| res_dict['empty_prompt'] = empty_prompt | |
| res_dict['final_input_prompt'] = empty_prompt | |
| res_dict.update(sample) | |
| return res_dict | |
| def split_list(lst, n): | |
| """Split a list into n (roughly) equal-sized chunks""" | |
| chunk_size = math.ceil(len(lst) / n) # integer division | |
| return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] | |
| def get_chunk(lst, n, k): | |
| chunks = split_list(lst, n) | |
| return chunks[k] | |
| def eval_model(args): | |
| # Model | |
| disable_torch_init() | |
| model_path = os.path.expanduser(args.model_path) | |
| model_name = get_model_name_from_path(model_path) | |
| tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name) | |
| model.config.training = False | |
| # run for each subject | |
| dataset = load_dataset(args.data_path, split=args.split) | |
| answers_file = os.path.expanduser(args.answers_file) | |
| os.makedirs(os.path.dirname(answers_file), exist_ok=True) | |
| out_samples = dict() | |
| for ind, sample in enumerate(tqdm(dataset, total=len(dataset))): | |
| pid = sample['pid'] | |
| qs = sample['question'] | |
| if sample['decoded_image'] is not None: | |
| #image_file = line["image"] | |
| #image = Image.open(os.path.join(args.image_folder, image_file)) | |
| image_tensor = process_images([sample['decoded_image'].convert('RGB')], image_processor, model.config)[0] | |
| images = image_tensor.unsqueeze(0).half().cuda() | |
| image_sizes = [sample['decoded_image'].size] | |
| if getattr(model.config, 'mm_use_im_start_end', False): | |
| qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs | |
| else: | |
| qs = DEFAULT_IMAGE_TOKEN + '\n' + qs | |
| else: | |
| images = None | |
| image_sizes = None | |
| conv = conv_templates[args.conv_mode].copy() | |
| conv.append_message(conv.roles[0], qs) | |
| conv.append_message(conv.roles[1], None) | |
| prompt = conv.get_prompt() | |
| input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() | |
| with torch.inference_mode(): | |
| output_ids = model.generate( | |
| input_ids, | |
| images=images, | |
| image_sizes=image_sizes, | |
| do_sample=True if args.temperature > 0 else False, | |
| #temperature=args.temperature, | |
| max_new_tokens=1024, | |
| pad_token_id=tokenizer.eos_token_id, | |
| use_cache=True, | |
| ) | |
| response = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() | |
| sample['response'] = response | |
| del sample['decoded_image'] | |
| out_samples[pid] = sample | |
| save_json(answers_file, out_samples) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--model-path", type=str, default="facebook/opt-350m") | |
| parser.add_argument("--model-base", type=str, default=None) | |
| parser.add_argument("--image-folder", type=str, default="") | |
| parser.add_argument("--question-file", type=str, default="tables/question.json") | |
| parser.add_argument("--answers-file", type=str, default="answer.jsonl") | |
| parser.add_argument("--conv-mode", type=str, default="llava_v0") | |
| parser.add_argument("--num-chunks", type=int, default=1) | |
| parser.add_argument("--chunk-idx", type=int, default=0) | |
| parser.add_argument("--temperature", type=float, default=0.2) | |
| parser.add_argument('--data_path', type=str, default="AI4Math/MathVista") # hf dataset path. | |
| parser.add_argument('--split', type=str, default='testmini') | |
| parser.add_argument("--answer-prompter", action="store_true") | |
| parser.add_argument("--single-pred-prompt", action="store_true") | |
| args = parser.parse_args() | |
| eval_model(args) | |