Spaces:
Sleeping
Sleeping
make the app more 'user friendly'
Browse files
app.py
CHANGED
|
@@ -10,56 +10,56 @@ if gr.NO_RELOAD:
|
|
| 10 |
|
| 11 |
DEVICE = 'cpu'
|
| 12 |
MODELS = [
|
| 13 |
-
(
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
),
|
| 23 |
-
(
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
),
|
| 33 |
-
(
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
),
|
| 43 |
-
(
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
),
|
| 53 |
-
(
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
),
|
| 63 |
(
|
| 64 |
'deberta-v3-base-model_2000',
|
| 65 |
lambda: BaseTransferLearningModel(
|
|
@@ -70,58 +70,64 @@ MODELS = [
|
|
| 70 |
state_dict='src/ckpt/deberta-v3-base-model_4000.pt',
|
| 71 |
),
|
| 72 |
),
|
| 73 |
-
(
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
),
|
| 83 |
-
(
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
),
|
| 93 |
-
(
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
),
|
| 103 |
-
(
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
),
|
| 113 |
]
|
| 114 |
|
| 115 |
|
| 116 |
class WebUI:
|
| 117 |
|
| 118 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
self.models = models
|
| 120 |
self.device = device
|
| 121 |
self.is_ready = False
|
| 122 |
self.model = self.models[0][1]()
|
| 123 |
self.is_ready = True
|
| 124 |
self.scraper = GenericScraper()
|
|
|
|
| 125 |
|
| 126 |
def _change_model(self, idx: int) -> str:
|
| 127 |
if gr.NO_RELOAD:
|
|
@@ -142,7 +148,9 @@ class WebUI:
|
|
| 142 |
if self.is_ready == False:
|
| 143 |
return 'Model is not yet ready!'
|
| 144 |
output = self.model.predict(text, self.device).detach().cpu().numpy()[0]
|
| 145 |
-
|
|
|
|
|
|
|
| 146 |
|
| 147 |
def _scrape(self, url: str) -> str:
|
| 148 |
try:
|
|
@@ -173,16 +181,18 @@ class WebUI:
|
|
| 173 |
)
|
| 174 |
btn_submit = gr.Button(value='Submit', variant='primary')
|
| 175 |
with gr.Column():
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
|
|
|
| 184 |
t_out = gr.Textbox(label='Output')
|
| 185 |
-
|
|
|
|
| 186 |
btn_scrape.click(fn=self._scrape, inputs=t_url, outputs=t_inp)
|
| 187 |
btn_submit.click(fn=self._predict, inputs=t_inp, outputs=t_out)
|
| 188 |
return ui
|
|
|
|
| 10 |
|
| 11 |
DEVICE = 'cpu'
|
| 12 |
MODELS = [
|
| 13 |
+
# (
|
| 14 |
+
# 'bert-model_1950',
|
| 15 |
+
# lambda: BaseTransferLearningModel(
|
| 16 |
+
# 'bert-base-uncased',
|
| 17 |
+
# [('linear', ['in', 'out']), ('softmax')],
|
| 18 |
+
# 2,
|
| 19 |
+
# device=DEVICE,
|
| 20 |
+
# state_dict='src/ckpt/bert-model_1950.pt',
|
| 21 |
+
# ),
|
| 22 |
+
# ),
|
| 23 |
+
# (
|
| 24 |
+
# 'bert-model_2000',
|
| 25 |
+
# lambda: BaseTransferLearningModel(
|
| 26 |
+
# 'bert-base-uncased',
|
| 27 |
+
# [('linear', ['in', 'out']), ('softmax')],
|
| 28 |
+
# 2,
|
| 29 |
+
# device=DEVICE,
|
| 30 |
+
# state_dict='src/ckpt/bert-model_2000.pt',
|
| 31 |
+
# ),
|
| 32 |
+
# ),
|
| 33 |
+
# (
|
| 34 |
+
# 'deberta-base-model_1100',
|
| 35 |
+
# lambda: BaseTransferLearningModel(
|
| 36 |
+
# 'microsoft/deberta-base',
|
| 37 |
+
# [('linear', ['in', 'out']), ('softmax')],
|
| 38 |
+
# 2,
|
| 39 |
+
# device=DEVICE,
|
| 40 |
+
# state_dict='src/ckpt/deberta-base-model_4400.pt',
|
| 41 |
+
# ),
|
| 42 |
+
# ),
|
| 43 |
+
# (
|
| 44 |
+
# 'deberta-base-model_2000',
|
| 45 |
+
# lambda: BaseTransferLearningModel(
|
| 46 |
+
# 'microsoft/deberta-base',
|
| 47 |
+
# [('linear', ['in', 'out']), ('softmax')],
|
| 48 |
+
# 2,
|
| 49 |
+
# device=DEVICE,
|
| 50 |
+
# state_dict='src/ckpt/deberta-base-model_8000.pt',
|
| 51 |
+
# ),
|
| 52 |
+
# ),
|
| 53 |
+
# (
|
| 54 |
+
# 'deberta-v3-base-model_1700',
|
| 55 |
+
# lambda: BaseTransferLearningModel(
|
| 56 |
+
# 'microsoft/deberta-v3-base',
|
| 57 |
+
# [('linear', ['in', 'out']), ('softmax')],
|
| 58 |
+
# 2,
|
| 59 |
+
# device=DEVICE,
|
| 60 |
+
# state_dict='src/ckpt/deberta-v3-base-model_3400.pt',
|
| 61 |
+
# ),
|
| 62 |
+
# ),
|
| 63 |
(
|
| 64 |
'deberta-v3-base-model_2000',
|
| 65 |
lambda: BaseTransferLearningModel(
|
|
|
|
| 70 |
state_dict='src/ckpt/deberta-v3-base-model_4000.pt',
|
| 71 |
),
|
| 72 |
),
|
| 73 |
+
# (
|
| 74 |
+
# 'distilbert-model_1850',
|
| 75 |
+
# lambda: BaseTransferLearningModel(
|
| 76 |
+
# 'distilbert-base-uncased',
|
| 77 |
+
# [('linear', ['in', 'out']), ('softmax')],
|
| 78 |
+
# 2,
|
| 79 |
+
# device=DEVICE,
|
| 80 |
+
# state_dict='src/ckpt/distilbert-model_1850.pt',
|
| 81 |
+
# ),
|
| 82 |
+
# ),
|
| 83 |
+
# (
|
| 84 |
+
# 'distilbert-model_2000',
|
| 85 |
+
# lambda: BaseTransferLearningModel(
|
| 86 |
+
# 'distilbert-base-uncased',
|
| 87 |
+
# [('linear', ['in', 'out']), ('softmax')],
|
| 88 |
+
# 2,
|
| 89 |
+
# device=DEVICE,
|
| 90 |
+
# state_dict='src/ckpt/distilbert-model_2000.pt',
|
| 91 |
+
# ),
|
| 92 |
+
# ),
|
| 93 |
+
# (
|
| 94 |
+
# 'roberta-base-model_1250',
|
| 95 |
+
# lambda: BaseTransferLearningModel(
|
| 96 |
+
# 'FacebookAI/roberta-base',
|
| 97 |
+
# [('linear', ['in', 'out']), ('softmax')],
|
| 98 |
+
# 2,
|
| 99 |
+
# device=DEVICE,
|
| 100 |
+
# state_dict='src/ckpt/roberta-base-model_1250.pt',
|
| 101 |
+
# ),
|
| 102 |
+
# ),
|
| 103 |
+
# (
|
| 104 |
+
# 'roberta-base-model_2000',
|
| 105 |
+
# lambda: BaseTransferLearningModel(
|
| 106 |
+
# 'FacebookAI/roberta-base',
|
| 107 |
+
# [('linear', ['in', 'out']), ('softmax')],
|
| 108 |
+
# 2,
|
| 109 |
+
# device=DEVICE,
|
| 110 |
+
# state_dict='src/ckpt/roberta-base-model_2000.pt',
|
| 111 |
+
# ),
|
| 112 |
+
# ),
|
| 113 |
]
|
| 114 |
|
| 115 |
|
| 116 |
class WebUI:
|
| 117 |
|
| 118 |
+
def __init__(
|
| 119 |
+
self,
|
| 120 |
+
models: list[(str, Callable)] = [],
|
| 121 |
+
device: str = 'cpu',
|
| 122 |
+
debug: bool = False,
|
| 123 |
+
) -> None:
|
| 124 |
self.models = models
|
| 125 |
self.device = device
|
| 126 |
self.is_ready = False
|
| 127 |
self.model = self.models[0][1]()
|
| 128 |
self.is_ready = True
|
| 129 |
self.scraper = GenericScraper()
|
| 130 |
+
self.debug = debug
|
| 131 |
|
| 132 |
def _change_model(self, idx: int) -> str:
|
| 133 |
if gr.NO_RELOAD:
|
|
|
|
| 148 |
if self.is_ready == False:
|
| 149 |
return 'Model is not yet ready!'
|
| 150 |
output = self.model.predict(text, self.device).detach().cpu().numpy()[0]
|
| 151 |
+
if self.debug:
|
| 152 |
+
return f'Fake: {output[0]:.10f}, Real: {output[1]:.10f}'
|
| 153 |
+
return f'We think that this is a {"fake" if output[0] > output[1] else "real"} news article with {max(output[0], output[1]) * 100:.2f}% certainty.'
|
| 154 |
|
| 155 |
def _scrape(self, url: str) -> str:
|
| 156 |
try:
|
|
|
|
| 181 |
)
|
| 182 |
btn_submit = gr.Button(value='Submit', variant='primary')
|
| 183 |
with gr.Column():
|
| 184 |
+
if self.debug:
|
| 185 |
+
ddl_model = gr.Dropdown(
|
| 186 |
+
label='Model',
|
| 187 |
+
choices=[model[0] for model in self.models],
|
| 188 |
+
value=self._change_model(0),
|
| 189 |
+
type='index',
|
| 190 |
+
interactive=True,
|
| 191 |
+
filterable=True,
|
| 192 |
+
)
|
| 193 |
t_out = gr.Textbox(label='Output')
|
| 194 |
+
if self.debug:
|
| 195 |
+
ddl_model.change(fn=self._change_model, inputs=ddl_model)
|
| 196 |
btn_scrape.click(fn=self._scrape, inputs=t_url, outputs=t_inp)
|
| 197 |
btn_submit.click(fn=self._predict, inputs=t_inp, outputs=t_out)
|
| 198 |
return ui
|