Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -692,7 +692,7 @@ demo = gr.TabbedInterface(
|
|
| 692 |
|
| 693 |
demo.launch()
|
| 694 |
'''
|
| 695 |
-
|
| 696 |
import gradio as gr
|
| 697 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 698 |
import torch
|
|
@@ -859,189 +859,9 @@ demo = gr.TabbedInterface(
|
|
| 859 |
)
|
| 860 |
|
| 861 |
demo.launch()
|
| 862 |
-
'''
|
| 863 |
-
import gradio as gr
|
| 864 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 865 |
-
import torch
|
| 866 |
-
from scipy.special import softmax
|
| 867 |
-
import praw
|
| 868 |
-
import os
|
| 869 |
-
import pytesseract
|
| 870 |
-
from PIL import Image
|
| 871 |
-
import cv2
|
| 872 |
-
import numpy as np
|
| 873 |
-
import re
|
| 874 |
-
import matplotlib.pyplot as plt
|
| 875 |
-
import pandas as pd
|
| 876 |
-
from langdetect import detect
|
| 877 |
-
|
| 878 |
-
# Install tesseract OCR (only runs once in Hugging Face Spaces)
|
| 879 |
-
os.system("apt-get update && apt-get install -y tesseract-ocr")
|
| 880 |
-
|
| 881 |
-
# Load main lightweight model (English)
|
| 882 |
-
main_model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 883 |
-
model = AutoModelForSequenceClassification.from_pretrained(main_model_name)
|
| 884 |
-
tokenizer = AutoTokenizer.from_pretrained(main_model_name)
|
| 885 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 886 |
-
model.to(device)
|
| 887 |
-
|
| 888 |
-
# Load multilingual fallback model (global languages)
|
| 889 |
-
multi_model_name = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
|
| 890 |
-
multi_tokenizer = AutoTokenizer.from_pretrained(multi_model_name)
|
| 891 |
-
multi_model = AutoModelForSequenceClassification.from_pretrained(multi_model_name).to(device)
|
| 892 |
-
multi_labels = ['Negative', 'Neutral', 'Positive']
|
| 893 |
|
| 894 |
-
# Load Hinglish/Hindi fallback model
|
| 895 |
-
hinglish_model_name = "iisc-dsi/hinglish-sentiment-model"
|
| 896 |
-
hinglish_tokenizer = AutoTokenizer.from_pretrained(hinglish_model_name)
|
| 897 |
-
hinglish_model = AutoModelForSequenceClassification.from_pretrained(hinglish_model_name).to(device)
|
| 898 |
-
hinglish_labels = ['Negative', 'Neutral', 'Positive']
|
| 899 |
|
| 900 |
-
# Reddit API setup
|
| 901 |
-
reddit = praw.Reddit(
|
| 902 |
-
client_id=os.getenv("REDDIT_CLIENT_ID"),
|
| 903 |
-
client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
|
| 904 |
-
user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-ui-finalyear2025-shrish191")
|
| 905 |
-
)
|
| 906 |
-
|
| 907 |
-
def fetch_reddit_text(reddit_url):
|
| 908 |
-
try:
|
| 909 |
-
submission = reddit.submission(url=reddit_url)
|
| 910 |
-
return f"{submission.title}\n\n{submission.selftext}"
|
| 911 |
-
except Exception as e:
|
| 912 |
-
return f"Error fetching Reddit post: {str(e)}"
|
| 913 |
-
|
| 914 |
-
def multilingual_classifier(text):
|
| 915 |
-
encoded_input = multi_tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(device)
|
| 916 |
-
with torch.no_grad():
|
| 917 |
-
output = multi_model(**encoded_input)
|
| 918 |
-
scores = softmax(output.logits.cpu().numpy()[0])
|
| 919 |
-
return f"Prediction: {multi_labels[np.argmax(scores)]}"
|
| 920 |
-
|
| 921 |
-
def hinglish_classifier(text):
|
| 922 |
-
encoded_input = hinglish_tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(device)
|
| 923 |
-
with torch.no_grad():
|
| 924 |
-
output = hinglish_model(**encoded_input)
|
| 925 |
-
scores = softmax(output.logits.cpu().numpy()[0])
|
| 926 |
-
return f"Prediction: {hinglish_labels[np.argmax(scores)]}"
|
| 927 |
-
|
| 928 |
-
def clean_ocr_text(text):
|
| 929 |
-
text = text.strip()
|
| 930 |
-
text = re.sub(r'\s+', ' ', text)
|
| 931 |
-
text = re.sub(r'[^\x00-\x7F]+', '', text)
|
| 932 |
-
return text
|
| 933 |
-
|
| 934 |
-
def classify_sentiment(text_input, reddit_url, image):
|
| 935 |
-
if reddit_url.strip():
|
| 936 |
-
text = fetch_reddit_text(reddit_url)
|
| 937 |
-
elif image is not None:
|
| 938 |
-
try:
|
| 939 |
-
img_array = np.array(image)
|
| 940 |
-
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
|
| 941 |
-
thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
|
| 942 |
-
text = pytesseract.image_to_string(thresh)
|
| 943 |
-
text = clean_ocr_text(text)
|
| 944 |
-
except Exception as e:
|
| 945 |
-
return f"[!] OCR failed: {str(e)}"
|
| 946 |
-
elif text_input.strip():
|
| 947 |
-
text = text_input
|
| 948 |
-
else:
|
| 949 |
-
return "[!] Please enter some text, upload an image, or provide a Reddit URL."
|
| 950 |
-
|
| 951 |
-
if text.lower().startswith("error") or "Unable to extract" in text:
|
| 952 |
-
return f"[!] {text}"
|
| 953 |
-
|
| 954 |
-
text = ' '.join(text.split()[:400])
|
| 955 |
|
| 956 |
-
try:
|
| 957 |
-
lang = detect(text)
|
| 958 |
-
if lang == 'en':
|
| 959 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 960 |
-
with torch.no_grad():
|
| 961 |
-
outputs = model(**inputs)
|
| 962 |
-
scores = softmax(outputs.logits.cpu().numpy()[0])
|
| 963 |
-
labels = ['Negative', 'Positive']
|
| 964 |
-
label = labels[scores.argmax()]
|
| 965 |
-
elif lang == 'hi':
|
| 966 |
-
label = hinglish_classifier(text).split(": ")[-1]
|
| 967 |
-
else:
|
| 968 |
-
label = multilingual_classifier(text).split(": ")[-1]
|
| 969 |
-
|
| 970 |
-
return f"🌐 Detected Language: {lang.upper()} | Prediction: {label}"
|
| 971 |
-
except Exception as e:
|
| 972 |
-
return f"[!] Prediction error: {str(e)}"
|
| 973 |
-
|
| 974 |
-
def analyze_subreddit(subreddit_name):
|
| 975 |
-
try:
|
| 976 |
-
subreddit = reddit.subreddit(subreddit_name)
|
| 977 |
-
posts = list(subreddit.hot(limit=20))
|
| 978 |
-
|
| 979 |
-
sentiments = []
|
| 980 |
-
titles = []
|
| 981 |
-
|
| 982 |
-
for post in posts:
|
| 983 |
-
text = f"{post.title}\n{post.selftext}"
|
| 984 |
-
text = ' '.join(text.split()[:400])
|
| 985 |
-
try:
|
| 986 |
-
lang = detect(text)
|
| 987 |
-
if lang == 'en':
|
| 988 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 989 |
-
with torch.no_grad():
|
| 990 |
-
outputs = model(**inputs)
|
| 991 |
-
scores = softmax(outputs.logits.cpu().numpy()[0])
|
| 992 |
-
labels = ['Negative', 'Positive']
|
| 993 |
-
sentiment = labels[scores.argmax()]
|
| 994 |
-
elif lang == 'hi':
|
| 995 |
-
sentiment = hinglish_classifier(text).split(": ")[-1]
|
| 996 |
-
else:
|
| 997 |
-
sentiment = multilingual_classifier(text).split(": ")[-1]
|
| 998 |
-
except:
|
| 999 |
-
sentiment = "Error"
|
| 1000 |
-
sentiments.append(sentiment)
|
| 1001 |
-
titles.append(post.title)
|
| 1002 |
-
|
| 1003 |
-
df = pd.DataFrame({"Title": titles, "Sentiment": sentiments})
|
| 1004 |
-
sentiment_counts = df["Sentiment"].value_counts()
|
| 1005 |
-
|
| 1006 |
-
fig, ax = plt.subplots()
|
| 1007 |
-
sentiment_counts.plot(kind="bar", ax=ax)
|
| 1008 |
-
ax.set_title(f"Sentiment Distribution in r/{subreddit_name}")
|
| 1009 |
-
ax.set_xlabel("Sentiment")
|
| 1010 |
-
ax.set_ylabel("Number of Posts")
|
| 1011 |
-
|
| 1012 |
-
return fig, df
|
| 1013 |
-
except Exception as e:
|
| 1014 |
-
return f"[!] Error: {str(e)}", pd.DataFrame()
|
| 1015 |
-
|
| 1016 |
-
main_interface = gr.Interface(
|
| 1017 |
-
fn=classify_sentiment,
|
| 1018 |
-
inputs=[
|
| 1019 |
-
gr.Textbox(label="Text Input", placeholder="Paste content here...", lines=4),
|
| 1020 |
-
gr.Textbox(label="Reddit Post URL", placeholder="Optional", lines=1),
|
| 1021 |
-
gr.Image(label="Upload Image (optional)", type="pil")
|
| 1022 |
-
],
|
| 1023 |
-
outputs="text",
|
| 1024 |
-
title="Sentiment Analyzer",
|
| 1025 |
-
description="🔍 Analyze sentiment of any text, Reddit post URL, or image content."
|
| 1026 |
-
)
|
| 1027 |
-
|
| 1028 |
-
subreddit_interface = gr.Interface(
|
| 1029 |
-
fn=analyze_subreddit,
|
| 1030 |
-
inputs=gr.Textbox(label="Subreddit Name", placeholder="e.g., AskReddit"),
|
| 1031 |
-
outputs=[
|
| 1032 |
-
gr.Plot(label="Sentiment Distribution"),
|
| 1033 |
-
gr.Dataframe(label="Post Titles and Sentiments", wrap=True)
|
| 1034 |
-
],
|
| 1035 |
-
title="Subreddit Sentiment Analysis",
|
| 1036 |
-
description="📊 Analyze top 20 posts of any subreddit."
|
| 1037 |
-
)
|
| 1038 |
-
|
| 1039 |
-
demo = gr.TabbedInterface(
|
| 1040 |
-
interface_list=[main_interface, subreddit_interface],
|
| 1041 |
-
tab_names=["General Sentiment Analysis", "Subreddit Analysis"]
|
| 1042 |
-
)
|
| 1043 |
-
|
| 1044 |
-
demo.launch()
|
| 1045 |
|
| 1046 |
|
| 1047 |
|
|
|
|
| 692 |
|
| 693 |
demo.launch()
|
| 694 |
'''
|
| 695 |
+
|
| 696 |
import gradio as gr
|
| 697 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 698 |
import torch
|
|
|
|
| 859 |
)
|
| 860 |
|
| 861 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 862 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 863 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 864 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 865 |
|
| 866 |
|
| 867 |
|