Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -17,11 +17,12 @@ base_model = AutoModelForCausalLM.from_pretrained(
|
|
| 17 |
)
|
| 18 |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
| 19 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
|
|
| 20 |
|
| 21 |
def generate_answer(question):
|
| 22 |
#inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
| 23 |
inputs = tokenizer.encode(question, return_tensors="pt")
|
| 24 |
-
outputs = model.generate(inputs, max_length=
|
| 25 |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 26 |
return answer
|
| 27 |
|
|
|
|
| 17 |
)
|
| 18 |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
| 19 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 20 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 21 |
|
| 22 |
def generate_answer(question):
|
| 23 |
#inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
| 24 |
inputs = tokenizer.encode(question, return_tensors="pt")
|
| 25 |
+
outputs = model.generate(inputs, max_length=50, num_return_sequences=1, do_sample=True)
|
| 26 |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 27 |
return answer
|
| 28 |
|