Spaces:
Runtime error
Runtime error
| import spaces | |
| import gradio as gr | |
| import time | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| from segment_utils import( | |
| segment_image, | |
| restore_result, | |
| ) | |
| from diffusers import ( | |
| DiffusionPipeline, | |
| T2IAdapter, | |
| MultiAdapter, | |
| AutoencoderKL, | |
| EulerAncestralDiscreteScheduler, | |
| ) | |
| from controlnet_aux import ( | |
| CannyDetector, | |
| LineartDetector, | |
| ) | |
| BASE_MODEL = "stabilityai/stable-diffusion-xl-base-1.0" | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| DEFAULT_EDIT_PROMPT = "RAW photo, Fujifilm XT3, sharp hair, high resolution hair, hair tones, natural hair, magazine hair, white color hair" | |
| DEFAULT_CATEGORY = "hair" | |
| canny_detector = CannyDetector() | |
| lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators") | |
| lineart_detector = lineart_detector.to(DEVICE) | |
| adapters = MultiAdapter( | |
| [ | |
| T2IAdapter.from_pretrained( | |
| "TencentARC/t2i-adapter-lineart-sdxl-1.0", | |
| torch_dtype=torch.float16, | |
| varient="fp16", | |
| ), | |
| T2IAdapter.from_pretrained( | |
| "TencentARC/t2i-adapter-canny-sdxl-1.0", | |
| torch_dtype=torch.float16, | |
| varient="fp16", | |
| ), | |
| ] | |
| ) | |
| adapters = adapters.to(torch.float16) | |
| basepipeline = DiffusionPipeline.from_pretrained( | |
| BASE_MODEL, | |
| torch_dtype=torch.float16, | |
| variant="fp16", | |
| use_safetensors=True, | |
| vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16), | |
| scheduler=EulerAncestralDiscreteScheduler.from_pretrained(BASE_MODEL, subfolder="scheduler"), | |
| adapter=adapters, | |
| custom_pipeline="./pipelines/pipeline_sdxl_adapter_img2img.py", | |
| ) | |
| basepipeline = basepipeline.to(DEVICE) | |
| basepipeline.enable_model_cpu_offload() | |
| def image_to_image( | |
| input_image: Image, | |
| edit_prompt: str, | |
| seed: int, | |
| num_steps: int, | |
| guidance_scale: float, | |
| strength: float, | |
| generate_size: int, | |
| cond_scale1: float = 1.2, | |
| cond_scale2: float = 1.2, | |
| lineart_detect:float = 0.375, | |
| canny_detect:float = 0.375, | |
| ): | |
| run_task_time = 0 | |
| time_cost_str = '' | |
| run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) | |
| lineart_image = lineart_detector(input_image, int(generate_size * lineart_detect), generate_size) | |
| canny_image = canny_detector(input_image, int(generate_size * canny_detect), generate_size) | |
| cond_image = [lineart_image, canny_image] | |
| cond_scale = [cond_scale1, cond_scale2] | |
| generator = torch.Generator(device=DEVICE).manual_seed(seed) | |
| generated_image = basepipeline( | |
| generator=generator, | |
| prompt=edit_prompt, | |
| image=input_image, | |
| height=generate_size, | |
| width=generate_size, | |
| guidance_scale=guidance_scale, | |
| strength=strength, | |
| num_inference_steps=num_steps, | |
| adapter_image=cond_image, | |
| adapter_conditioning_scale=cond_scale, | |
| ).images[0] | |
| run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) | |
| return generated_image, time_cost_str | |
| def make_inpaint_condition(image, image_mask): | |
| image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 | |
| image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0 | |
| assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size" | |
| image[image_mask > 0.5] = -1.0 # set as masked pixel | |
| image = np.expand_dims(image, 0).transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image) | |
| return image | |
| def get_time_cost(run_task_time, time_cost_str): | |
| now_time = int(time.time()*1000) | |
| if run_task_time == 0: | |
| time_cost_str = 'start' | |
| else: | |
| if time_cost_str != '': | |
| time_cost_str += f'-->' | |
| time_cost_str += f'{now_time - run_task_time}' | |
| run_task_time = now_time | |
| return run_task_time, time_cost_str | |
| def create_demo() -> gr.Blocks: | |
| with gr.Blocks() as demo: | |
| croper = gr.State() | |
| with gr.Row(): | |
| with gr.Column(): | |
| edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT) | |
| generate_size = gr.Number(label="Generate Size", value=512) | |
| with gr.Column(): | |
| num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps") | |
| guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale") | |
| with gr.Column(): | |
| strength = gr.Slider(minimum=0, maximum=3, value=0.2, step=0.1, label="Strength") | |
| with gr.Accordion("Advanced Options", open=False): | |
| mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True) | |
| mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation") | |
| seed = gr.Number(label="Seed", value=8) | |
| category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False) | |
| cond_scale1 = gr.Slider(minimum=0, maximum=3, value=0.8, step=0.1, label="Cond_scale1") | |
| cond_scale2 = gr.Slider(minimum=0, maximum=3, value=0.3, step=0.1, label="Cond_scale2") | |
| lineart_detect = gr.Slider(minimum=0, maximum=1, value=0.375, step=0.01, label="Lineart Detect") | |
| canny_detect = gr.Slider(minimum=0, maximum=1, value=0.75, step=0.01, label="Canny Detect") | |
| g_btn = gr.Button("Edit Image") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(label="Input Image", type="pil") | |
| with gr.Column(): | |
| restored_image = gr.Image(label="Restored Image", type="pil", interactive=False) | |
| with gr.Column(): | |
| origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False) | |
| generated_image = gr.Image(label="Generated Image", type="pil", interactive=False) | |
| generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False) | |
| g_btn.click( | |
| fn=segment_image, | |
| inputs=[input_image, category, generate_size, mask_expansion, mask_dilation], | |
| outputs=[origin_area_image, croper], | |
| ).success( | |
| fn=image_to_image, | |
| inputs=[origin_area_image, edit_prompt,seed, num_steps, guidance_scale, strength, generate_size, cond_scale1, cond_scale2, lineart_detect, canny_detect], | |
| outputs=[generated_image, generated_cost], | |
| ).success( | |
| fn=restore_result, | |
| inputs=[croper, category, generated_image], | |
| outputs=[restored_image], | |
| ) | |
| return demo |