Spaces:
Runtime error
Runtime error
zhiweili
commited on
Commit
·
991068d
1
Parent(s):
991954d
change to img2img
Browse files- app.py +1 -1
- app_haircolor_img2img.py +40 -37
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
-
from
|
| 4 |
|
| 5 |
with gr.Blocks(css="style.css") as demo:
|
| 6 |
with gr.Tabs():
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
+
from app_haircolor_img2img import create_demo as create_demo_haircolor
|
| 4 |
|
| 5 |
with gr.Blocks(css="style.css") as demo:
|
| 6 |
with gr.Tabs():
|
app_haircolor_img2img.py
CHANGED
|
@@ -10,22 +10,19 @@ from segment_utils import(
|
|
| 10 |
restore_result,
|
| 11 |
)
|
| 12 |
from diffusers import (
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
EulerAncestralDiscreteScheduler,
|
| 18 |
-
UniPCMultistepScheduler,
|
| 19 |
)
|
| 20 |
|
| 21 |
from controlnet_aux import (
|
| 22 |
CannyDetector,
|
| 23 |
LineartDetector,
|
| 24 |
-
PidiNetDetector,
|
| 25 |
-
HEDdetector,
|
| 26 |
)
|
| 27 |
|
| 28 |
-
BASE_MODEL = "stable-diffusion-
|
| 29 |
|
| 30 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
|
|
@@ -37,32 +34,34 @@ canny_detector = CannyDetector()
|
|
| 37 |
lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators")
|
| 38 |
lineart_detector = lineart_detector.to(DEVICE)
|
| 39 |
|
| 40 |
-
pidiNet_detector = PidiNetDetector.from_pretrained('lllyasviel/Annotators')
|
| 41 |
-
pidiNet_detector = pidiNet_detector.to(DEVICE)
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
]
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
basepipeline =
|
| 58 |
BASE_MODEL,
|
| 59 |
-
torch_dtype=torch.float16,
|
|
|
|
| 60 |
use_safetensors=True,
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
| 62 |
)
|
| 63 |
|
| 64 |
-
basepipeline.scheduler = UniPCMultistepScheduler.from_config(basepipeline.scheduler.config)
|
| 65 |
-
|
| 66 |
basepipeline = basepipeline.to(DEVICE)
|
| 67 |
|
| 68 |
basepipeline.enable_model_cpu_offload()
|
|
@@ -78,15 +77,17 @@ def image_to_image(
|
|
| 78 |
generate_size: int,
|
| 79 |
cond_scale1: float = 1.2,
|
| 80 |
cond_scale2: float = 1.2,
|
|
|
|
|
|
|
| 81 |
):
|
| 82 |
run_task_time = 0
|
| 83 |
time_cost_str = ''
|
| 84 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
| 85 |
-
lineart_image = lineart_detector(input_image,
|
|
|
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
cond_image = [lineart_image, pidinet_image]
|
| 90 |
|
| 91 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 92 |
generated_image = basepipeline(
|
|
@@ -99,7 +100,7 @@ def image_to_image(
|
|
| 99 |
guidance_scale=guidance_scale,
|
| 100 |
strength=strength,
|
| 101 |
num_inference_steps=num_steps,
|
| 102 |
-
controlnet_conditioning_scale=
|
| 103 |
).images[0]
|
| 104 |
|
| 105 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
|
@@ -137,15 +138,17 @@ def create_demo() -> gr.Blocks:
|
|
| 137 |
with gr.Column():
|
| 138 |
num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps")
|
| 139 |
guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
|
| 140 |
-
strength = gr.Slider(minimum=0, maximum=3, value=0.2, step=0.1, label="Strength")
|
| 141 |
with gr.Column():
|
|
|
|
| 142 |
with gr.Accordion("Advanced Options", open=False):
|
| 143 |
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
|
| 144 |
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
|
| 145 |
seed = gr.Number(label="Seed", value=8)
|
| 146 |
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
|
| 147 |
-
cond_scale1 = gr.Slider(minimum=0, maximum=3, value=
|
| 148 |
-
cond_scale2 = gr.Slider(minimum=0, maximum=3, value=
|
|
|
|
|
|
|
| 149 |
g_btn = gr.Button("Edit Image")
|
| 150 |
|
| 151 |
with gr.Row():
|
|
@@ -164,7 +167,7 @@ def create_demo() -> gr.Blocks:
|
|
| 164 |
outputs=[origin_area_image, croper],
|
| 165 |
).success(
|
| 166 |
fn=image_to_image,
|
| 167 |
-
inputs=[origin_area_image, edit_prompt,seed, num_steps, guidance_scale, strength, generate_size, cond_scale1, cond_scale2],
|
| 168 |
outputs=[generated_image, generated_cost],
|
| 169 |
).success(
|
| 170 |
fn=restore_result,
|
|
|
|
| 10 |
restore_result,
|
| 11 |
)
|
| 12 |
from diffusers import (
|
| 13 |
+
DiffusionPipeline,
|
| 14 |
+
T2IAdapter,
|
| 15 |
+
MultiAdapter,
|
| 16 |
+
AutoencoderKL,
|
| 17 |
EulerAncestralDiscreteScheduler,
|
|
|
|
| 18 |
)
|
| 19 |
|
| 20 |
from controlnet_aux import (
|
| 21 |
CannyDetector,
|
| 22 |
LineartDetector,
|
|
|
|
|
|
|
| 23 |
)
|
| 24 |
|
| 25 |
+
BASE_MODEL = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 26 |
|
| 27 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 28 |
|
|
|
|
| 34 |
lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators")
|
| 35 |
lineart_detector = lineart_detector.to(DEVICE)
|
| 36 |
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
adapters = MultiAdapter(
|
| 39 |
+
[
|
| 40 |
+
T2IAdapter.from_pretrained(
|
| 41 |
+
"TencentARC/t2i-adapter-lineart-sdxl-1.0",
|
| 42 |
+
torch_dtype=torch.float16,
|
| 43 |
+
varient="fp16",
|
| 44 |
+
),
|
| 45 |
+
T2IAdapter.from_pretrained(
|
| 46 |
+
"TencentARC/t2i-adapter-canny-sdxl-1.0",
|
| 47 |
+
torch_dtype=torch.float16,
|
| 48 |
+
varient="fp16",
|
| 49 |
+
),
|
| 50 |
+
]
|
| 51 |
+
)
|
| 52 |
+
adapters = adapters.to(torch.float16)
|
| 53 |
|
| 54 |
+
basepipeline = DiffusionPipeline.from_pretrained(
|
| 55 |
BASE_MODEL,
|
| 56 |
+
torch_dtype=torch.float16,
|
| 57 |
+
variant="fp16",
|
| 58 |
use_safetensors=True,
|
| 59 |
+
vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16),
|
| 60 |
+
scheduler=EulerAncestralDiscreteScheduler.from_pretrained(BASE_MODEL, subfolder="scheduler"),
|
| 61 |
+
adapter=adapters,
|
| 62 |
+
custom_pipeline="./pipelines/pipeline_sdxl_adapter_img2img.py",
|
| 63 |
)
|
| 64 |
|
|
|
|
|
|
|
| 65 |
basepipeline = basepipeline.to(DEVICE)
|
| 66 |
|
| 67 |
basepipeline.enable_model_cpu_offload()
|
|
|
|
| 77 |
generate_size: int,
|
| 78 |
cond_scale1: float = 1.2,
|
| 79 |
cond_scale2: float = 1.2,
|
| 80 |
+
lineart_detect:float = 0.375,
|
| 81 |
+
canny_detect:float = 0.375,
|
| 82 |
):
|
| 83 |
run_task_time = 0
|
| 84 |
time_cost_str = ''
|
| 85 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
| 86 |
+
lineart_image = lineart_detector(input_image, int(generate_size * lineart_detect), generate_size)
|
| 87 |
+
canny_image = canny_detector(input_image, int(generate_size * canny_detect), generate_size)
|
| 88 |
|
| 89 |
+
cond_image = [lineart_image, canny_image]
|
| 90 |
+
cond_scale = [cond_scale1, cond_scale2]
|
|
|
|
| 91 |
|
| 92 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 93 |
generated_image = basepipeline(
|
|
|
|
| 100 |
guidance_scale=guidance_scale,
|
| 101 |
strength=strength,
|
| 102 |
num_inference_steps=num_steps,
|
| 103 |
+
controlnet_conditioning_scale=cond_scale,
|
| 104 |
).images[0]
|
| 105 |
|
| 106 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
|
|
|
| 138 |
with gr.Column():
|
| 139 |
num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps")
|
| 140 |
guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
|
|
|
|
| 141 |
with gr.Column():
|
| 142 |
+
strength = gr.Slider(minimum=0, maximum=3, value=0.2, step=0.1, label="Strength")
|
| 143 |
with gr.Accordion("Advanced Options", open=False):
|
| 144 |
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
|
| 145 |
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
|
| 146 |
seed = gr.Number(label="Seed", value=8)
|
| 147 |
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
|
| 148 |
+
cond_scale1 = gr.Slider(minimum=0, maximum=3, value=0.8, step=0.1, label="Cond_scale1")
|
| 149 |
+
cond_scale2 = gr.Slider(minimum=0, maximum=3, value=0.3, step=0.1, label="Cond_scale2")
|
| 150 |
+
lineart_detect = gr.Slider(minimum=0, maximum=1, value=0.375, step=0.01, label="Lineart Detect")
|
| 151 |
+
canny_detect = gr.Slider(minimum=0, maximum=1, value=0.75, step=0.01, label="Canny Detect")
|
| 152 |
g_btn = gr.Button("Edit Image")
|
| 153 |
|
| 154 |
with gr.Row():
|
|
|
|
| 167 |
outputs=[origin_area_image, croper],
|
| 168 |
).success(
|
| 169 |
fn=image_to_image,
|
| 170 |
+
inputs=[origin_area_image, edit_prompt,seed, num_steps, guidance_scale, strength, generate_size, cond_scale1, cond_scale2, lineart_detect, canny_detect],
|
| 171 |
outputs=[generated_image, generated_cost],
|
| 172 |
).success(
|
| 173 |
fn=restore_result,
|