Spaces:
Sleeping
Sleeping
| # Self-Correction-Human-Parsing | |
| # Original https://github.com/GoGoDuck912/Self-Correction-Human-Parsing | |
| import os | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import cv2 | |
| import torchvision.transforms as T | |
| from .transforms import transform_logits, get_affine_transform | |
| from . import networks | |
| from annotator.util import annotator_ckpts_path | |
| from huggingface_hub import snapshot_download | |
| dataset_settings = { | |
| 'lip': { | |
| 'input_size': [473, 473], | |
| 'num_classes': 20, | |
| 'label': ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat', | |
| 'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm', | |
| 'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe'] | |
| }, | |
| 'atr': { | |
| 'input_size': [512, 512], | |
| 'num_classes': 18, | |
| 'label': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt', | |
| 'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf'] | |
| }, | |
| 'pascal': { | |
| 'input_size': [512, 512], | |
| 'num_classes': 7, | |
| 'label': ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'], | |
| } | |
| } | |
| def get_palette(num_cls): | |
| """ Returns the color map for visualizing the segmentation mask. | |
| Args: | |
| num_cls: Number of classes | |
| Returns: | |
| The color map | |
| """ | |
| n = num_cls | |
| palette = [0] * (n * 3) | |
| for j in range(0, n): | |
| lab = j | |
| palette[j * 3 + 0] = 0 | |
| palette[j * 3 + 1] = 0 | |
| palette[j * 3 + 2] = 0 | |
| i = 0 | |
| while lab: | |
| palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) | |
| palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) | |
| palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) | |
| i += 1 | |
| lab >>= 3 | |
| return palette | |
| class Segmentator(torch.nn.Module): | |
| def __init__(self, dataset='lip'): | |
| super().__init__() | |
| num_classes = dataset_settings[dataset]['num_classes'] | |
| input_size = dataset_settings[dataset]['input_size'] | |
| label = dataset_settings[dataset]['label'] | |
| if dataset == 'atr': | |
| model_path='exp-schp-201908301523-atr.pth' | |
| elif dataset == 'lip': | |
| model_path='exp-schp-201908261155-lip.pth' | |
| model_path = os.path.join(annotator_ckpts_path, model_path) | |
| snapshot_download(repo_id="soonyau/visconet", allow_patterns="exp-schp-201908301523-atr.pth", local_dir=annotator_ckpts_path) | |
| self.model = networks.init_model('resnet101', num_classes=num_classes, pretrained=None) | |
| state_dict = torch.load(model_path)['state_dict'] | |
| from collections import OrderedDict | |
| new_state_dict = OrderedDict() | |
| for k, v in state_dict.items(): | |
| name = k[7:] # remove `module.` | |
| new_state_dict[name] = v | |
| self.model.load_state_dict(new_state_dict) | |
| self.model.eval() | |
| self.palette = get_palette(num_classes) | |
| self.transform = T.Compose([ | |
| T.ToTensor(), | |
| T.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229]) | |
| ]) | |
| self.aspect_ratio = input_size[1] * 1.0 / input_size[0] | |
| self.input_size = np.asarray(input_size) | |
| def _box2cs(self, box): | |
| x, y, w, h = box[:4] | |
| return self._xywh2cs(x, y, w, h) | |
| def _xywh2cs(self, x, y, w, h): | |
| center = np.zeros((2), dtype=np.float32) | |
| center[0] = x + w * 0.5 | |
| center[1] = y + h * 0.5 | |
| if w > self.aspect_ratio * h: | |
| h = w * 1.0 / self.aspect_ratio | |
| elif w < self.aspect_ratio * h: | |
| w = h * self.aspect_ratio | |
| scale = np.array([w, h], dtype=np.float32) | |
| return center, scale | |
| def preprocess(self, image:np.array): | |
| # convert numpy to cv2 | |
| image = image[:,:,::-1] | |
| h, w, _ = image.shape | |
| # Get person center and scale | |
| person_center, s = self._box2cs([0, 0, w - 1, h - 1]) | |
| r = 0 | |
| trans = get_affine_transform(person_center, s, r, self.input_size) | |
| input = cv2.warpAffine( | |
| image, | |
| trans, | |
| (int(self.input_size[1]), int(self.input_size[0])), | |
| flags=cv2.INTER_LINEAR, | |
| borderMode=cv2.BORDER_CONSTANT, | |
| borderValue=(0, 0, 0)) | |
| input = self.transform(input) | |
| meta = { | |
| 'center': person_center, | |
| 'height': h, | |
| 'width': w, | |
| 'scale': s, | |
| 'rotation': r | |
| } | |
| return input, meta | |
| def __call__(self, input_image): | |
| image, meta = self.preprocess(input_image) | |
| c = meta['center'] | |
| s = meta['scale'] | |
| w = meta['width'] | |
| h = meta['height'] | |
| input_size = list(self.input_size) | |
| device = next(self.parameters()).device | |
| output = self.model(image.unsqueeze(0).to(device)) | |
| upsample = torch.nn.Upsample(size=input_size, mode='bilinear', align_corners=True) | |
| upsample_output = upsample(output[0][-1][0].unsqueeze(0)) | |
| upsample_output = upsample_output.squeeze() | |
| upsample_output = upsample_output.permute(1, 2, 0) # CHW -> HWC | |
| logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=input_size) | |
| parsing_result = np.argmax(logits_result, axis=2) | |
| output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8)) | |
| #return output_img | |
| output_img.putpalette(self.palette) | |
| return output_img | |
| #return np.array(output_img) | |