Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,13 +4,12 @@ from transformers import CLIPProcessor, CLIPModel
|
|
| 4 |
from PIL import Image
|
| 5 |
import os
|
| 6 |
import faiss
|
| 7 |
-
from datasets import load_dataset
|
| 8 |
-
import requests
|
| 9 |
import io
|
| 10 |
-
import time
|
| 11 |
|
| 12 |
# --- Configuration ---
|
| 13 |
-
MODEL_PATH = "clip_finetuned"
|
| 14 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
FAISS_INDEX_PATH = "gallery.index"
|
| 16 |
|
|
@@ -22,79 +21,47 @@ processor = CLIPProcessor.from_pretrained(MODEL_PATH)
|
|
| 22 |
print("Loading FAISS index...")
|
| 23 |
faiss_index = faiss.read_index(FAISS_INDEX_PATH)
|
| 24 |
|
| 25 |
-
# ---
|
| 26 |
-
print("Connecting to COCO dataset
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
print(f"Successfully connected to combined dataset with {len(combined_dataset)} images.")
|
| 31 |
-
|
| 32 |
-
# --- Filter for Child-Friendly Content ---
|
| 33 |
-
def filter_child_friendly(dataset):
|
| 34 |
-
adult_keywords = ["nude", "violence", "adult", "gun", "blood"]
|
| 35 |
-
filtered_dataset = []
|
| 36 |
-
for item in dataset:
|
| 37 |
-
file_name = item.get('file_name', '').lower()
|
| 38 |
-
# Exclude images with adult-related keywords in file_name
|
| 39 |
-
if not any(keyword in file_name for keyword in adult_keywords):
|
| 40 |
-
filtered_dataset.append(item)
|
| 41 |
-
return filtered_dataset
|
| 42 |
-
|
| 43 |
-
filtered_dataset = filter_child_friendly(combined_dataset)
|
| 44 |
-
print(f"Filtered dataset size for child-friendly content: {len(filtered_dataset)} images.")
|
| 45 |
|
| 46 |
-
# --- The Search Function
|
| 47 |
def image_search(query_text: str, top_k: int):
|
| 48 |
-
start_time = time.time()
|
| 49 |
with torch.no_grad():
|
| 50 |
inputs = processor(text=query_text, return_tensors="pt").to(DEVICE)
|
| 51 |
text_embedding = model.get_text_features(**inputs)
|
| 52 |
text_embedding /= text_embedding.norm(p=2, dim=-1, keepdim=True)
|
| 53 |
|
| 54 |
distances, indices = faiss_index.search(text_embedding.cpu().numpy(), int(top_k))
|
| 55 |
-
|
| 56 |
-
# Process results with metrics
|
| 57 |
results = []
|
| 58 |
-
relevant_count = 0
|
| 59 |
-
retrieval_time = time.time() - start_time
|
| 60 |
-
memory_usage = torch.cuda.memory_allocated() / 1024**2 if DEVICE == "cuda" else os.cpu_count() * 10 # Approx. MB
|
| 61 |
-
|
| 62 |
for i in indices[0]:
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
relevant_count += 1
|
| 73 |
-
|
| 74 |
-
accuracy = (relevant_count / top_k) * 100 if top_k > 0 else 0
|
| 75 |
-
metrics = f"Retrieval Time: {retrieval_time:.2f} seconds, Memory Usage: {memory_usage:.2f} MB, Accuracy: {accuracy:.2f}%"
|
| 76 |
-
|
| 77 |
-
print(metrics)
|
| 78 |
-
return results, metrics
|
| 79 |
-
|
| 80 |
-
# --- Gradio Interface ---
|
| 81 |
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
| 82 |
gr.Markdown("# 🖼️ CLIP-Powered Image Search Engine")
|
| 83 |
-
gr.Markdown("Enter a text description to search for
|
| 84 |
|
| 85 |
with gr.Row():
|
| 86 |
-
query_input = gr.Textbox(label="Search Query", placeholder="e.g., a
|
| 87 |
k_slider = gr.Slider(minimum=1, maximum=12, value=4, step=1, label="Number of Results")
|
| 88 |
submit_btn = gr.Button("Search", variant="primary")
|
| 89 |
|
| 90 |
gallery_output = gr.Gallery(label="Search Results", show_label=False, columns=4, height="auto")
|
| 91 |
-
metrics_output = gr.Textbox(label="Performance Metrics", interactive=False)
|
| 92 |
|
| 93 |
-
submit_btn.click(fn=image_search, inputs=[query_input, k_slider], outputs=
|
| 94 |
|
| 95 |
gr.Examples(
|
| 96 |
-
examples=[["a dog
|
| 97 |
inputs=[query_input, k_slider]
|
| 98 |
)
|
| 99 |
|
| 100 |
-
iface.launch(
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
import os
|
| 6 |
import faiss
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
+
import requests
|
| 9 |
import io
|
|
|
|
| 10 |
|
| 11 |
# --- Configuration ---
|
| 12 |
+
MODEL_PATH = "clip_finetuned"
|
| 13 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
FAISS_INDEX_PATH = "gallery.index"
|
| 15 |
|
|
|
|
| 21 |
print("Loading FAISS index...")
|
| 22 |
faiss_index = faiss.read_index(FAISS_INDEX_PATH)
|
| 23 |
|
| 24 |
+
# --- Connect to the COCO dataset on the Hub ---
|
| 25 |
+
print("Connecting to COCO dataset on the Hub...")
|
| 26 |
+
val_dataset = load_dataset("phiyodr/coco2017", split="validation", trust_remote_code=True)
|
| 27 |
+
|
| 28 |
+
print(f"Successfully connected to dataset with {len(val_dataset)} images.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
# --- The Search Function (Corrected) ---
|
| 31 |
def image_search(query_text: str, top_k: int):
|
|
|
|
| 32 |
with torch.no_grad():
|
| 33 |
inputs = processor(text=query_text, return_tensors="pt").to(DEVICE)
|
| 34 |
text_embedding = model.get_text_features(**inputs)
|
| 35 |
text_embedding /= text_embedding.norm(p=2, dim=-1, keepdim=True)
|
| 36 |
|
| 37 |
distances, indices = faiss_index.search(text_embedding.cpu().numpy(), int(top_k))
|
|
|
|
|
|
|
| 38 |
results = []
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
for i in indices[0]:
|
| 40 |
+
item = val_dataset[int(i)]
|
| 41 |
+
image_url = item['coco_url']
|
| 42 |
+
response = requests.get(image_url)
|
| 43 |
+
image = Image.open(io.BytesIO(response.content)).convert("RGB")
|
| 44 |
+
results.append(image)
|
| 45 |
+
|
| 46 |
+
return results
|
| 47 |
+
|
| 48 |
+
# --- Gradio Interface (No changes needed here) ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
| 50 |
gr.Markdown("# 🖼️ CLIP-Powered Image Search Engine")
|
| 51 |
+
gr.Markdown("Enter a text description to search for matching images.")
|
| 52 |
|
| 53 |
with gr.Row():
|
| 54 |
+
query_input = gr.Textbox(label="Search Query", placeholder="e.g., a red car parked near a building", scale=4)
|
| 55 |
k_slider = gr.Slider(minimum=1, maximum=12, value=4, step=1, label="Number of Results")
|
| 56 |
submit_btn = gr.Button("Search", variant="primary")
|
| 57 |
|
| 58 |
gallery_output = gr.Gallery(label="Search Results", show_label=False, columns=4, height="auto")
|
|
|
|
| 59 |
|
| 60 |
+
submit_btn.click(fn=image_search, inputs=[query_input, k_slider], outputs=gallery_output)
|
| 61 |
|
| 62 |
gr.Examples(
|
| 63 |
+
examples=[["a dog catching a frisbee", 4], ["two people eating pizza", 8]],
|
| 64 |
inputs=[query_input, k_slider]
|
| 65 |
)
|
| 66 |
|
| 67 |
+
iface.launch()
|