Spaces:
Sleeping
Sleeping
Some polishing with Claude's Help
Browse files
app.py
CHANGED
|
@@ -2,6 +2,8 @@ import pandas as pd
|
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
import gradio as gr
|
| 4 |
import tempfile
|
|
|
|
|
|
|
| 5 |
|
| 6 |
from statsforecast import StatsForecast
|
| 7 |
from statsforecast.models import (
|
|
@@ -27,59 +29,122 @@ def load_data(file):
|
|
| 27 |
missing_cols = [col for col in required_cols if col not in df.columns]
|
| 28 |
if missing_cols:
|
| 29 |
return None, f"Missing required columns: {', '.join(missing_cols)}"
|
|
|
|
| 30 |
df['ds'] = pd.to_datetime(df['ds'])
|
| 31 |
-
df = df.sort_values(['unique_id', 'ds'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
return df, "Data loaded successfully!"
|
| 33 |
except Exception as e:
|
| 34 |
return None, f"Error loading data: {str(e)}"
|
| 35 |
|
| 36 |
# Function to generate and return a plot
|
| 37 |
def create_forecast_plot(forecast_df, original_df, title="Forecasting Results"):
|
| 38 |
-
plt.figure(figsize=(
|
| 39 |
unique_ids = forecast_df['unique_id'].unique()
|
| 40 |
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds', 'cutoff']]
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
| 43 |
original_data = original_df[original_df['unique_id'] == unique_id]
|
| 44 |
-
plt.plot(original_data['ds'], original_data['y'], 'k-', label='Actual')
|
|
|
|
| 45 |
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
|
| 46 |
-
for col in forecast_cols:
|
| 47 |
if col in forecast_data.columns:
|
| 48 |
-
plt.plot(forecast_data['ds'], forecast_data[col],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
plt.title(title)
|
| 51 |
-
plt.xlabel('Date')
|
| 52 |
-
plt.ylabel('Value')
|
| 53 |
-
plt.
|
| 54 |
-
plt.
|
|
|
|
|
|
|
|
|
|
| 55 |
fig = plt.gcf()
|
|
|
|
|
|
|
|
|
|
| 56 |
return fig
|
| 57 |
|
| 58 |
# Function to create a plot for future forecasts
|
| 59 |
def create_future_forecast_plot(forecast_df, original_df):
|
| 60 |
-
plt.figure(figsize=(
|
| 61 |
unique_ids = forecast_df['unique_id'].unique()
|
| 62 |
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds']]
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
| 65 |
# Plot historical data
|
| 66 |
original_data = original_df[original_df['unique_id'] == unique_id]
|
| 67 |
-
plt.plot(original_data['ds'], original_data['y'], 'k-', label='Historical')
|
| 68 |
|
| 69 |
-
# Plot forecast data
|
| 70 |
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
if col in forecast_data.columns:
|
| 73 |
-
plt.plot(forecast_data['ds'], forecast_data[col],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
plt.title('Future Forecast')
|
| 76 |
-
plt.xlabel('Date')
|
| 77 |
-
plt.ylabel('Value')
|
| 78 |
-
plt.
|
| 79 |
-
plt.
|
|
|
|
|
|
|
|
|
|
| 80 |
fig = plt.gcf()
|
|
|
|
|
|
|
|
|
|
| 81 |
return fig
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
# Main forecasting logic
|
| 84 |
def run_forecast(
|
| 85 |
file,
|
|
@@ -102,7 +167,7 @@ def run_forecast(
|
|
| 102 |
):
|
| 103 |
df, message = load_data(file)
|
| 104 |
if df is None:
|
| 105 |
-
return None, None, None, None, None, message
|
| 106 |
|
| 107 |
models = []
|
| 108 |
model_aliases = []
|
|
@@ -130,7 +195,7 @@ def run_forecast(
|
|
| 130 |
model_aliases.append('autoarima')
|
| 131 |
|
| 132 |
if not models:
|
| 133 |
-
return None, None, None, None, None, "Please select at least one forecasting model"
|
| 134 |
|
| 135 |
sf = StatsForecast(models=models, freq=frequency, n_jobs=-1)
|
| 136 |
|
|
@@ -148,81 +213,130 @@ def run_forecast(
|
|
| 148 |
fig_validation = create_forecast_plot(cv_results, df, "Fixed Window Validation Results")
|
| 149 |
|
| 150 |
# Generate future forecasts
|
| 151 |
-
future_forecasts = sf.forecast(df
|
| 152 |
fig_future = create_future_forecast_plot(future_forecasts, df)
|
| 153 |
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
except Exception as e:
|
| 157 |
-
return None, None, None, None, None, f"Error during forecasting: {str(e)}"
|
| 158 |
|
| 159 |
# Sample CSV file generation
|
| 160 |
def download_sample():
|
| 161 |
sample_data = """unique_id,ds,y
|
| 162 |
-
series1,
|
| 163 |
-
series1,
|
| 164 |
-
series1,
|
| 165 |
-
series1,
|
| 166 |
-
series1,
|
| 167 |
-
series1,
|
| 168 |
-
series1,
|
| 169 |
-
series1,
|
| 170 |
-
series1,
|
| 171 |
-
series1,
|
| 172 |
-
series1,
|
| 173 |
-
series1,
|
| 174 |
-
series1,
|
| 175 |
-
series1,
|
| 176 |
-
series1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
"""
|
| 178 |
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='w', newline='')
|
| 179 |
temp.write(sample_data)
|
| 180 |
temp.close()
|
| 181 |
return temp.name
|
| 182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
# Gradio interface
|
| 184 |
-
with gr.Blocks(title="
|
| 185 |
-
gr.Markdown("# 📈
|
| 186 |
gr.Markdown("Upload a CSV with `unique_id`, `ds`, and `y` columns to apply forecasting models.")
|
| 187 |
|
| 188 |
with gr.Row():
|
| 189 |
with gr.Column(scale=2):
|
| 190 |
file_input = gr.File(label="Upload CSV file", file_types=[".csv"])
|
| 191 |
|
| 192 |
-
download_btn = gr.Button("Download Sample Data")
|
| 193 |
download_output = gr.File(label="Click to download", visible=True)
|
| 194 |
download_btn.click(fn=download_sample, outputs=download_output)
|
| 195 |
|
| 196 |
with gr.Accordion("Data & Validation Settings", open=True):
|
| 197 |
-
frequency = gr.Dropdown(
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
with gr.Accordion("Model Configuration", open=True):
|
| 207 |
-
|
| 208 |
-
|
|
|
|
|
|
|
| 209 |
|
|
|
|
| 210 |
with gr.Row():
|
| 211 |
-
use_seasonal_naive = gr.Checkbox(label="
|
| 212 |
-
seasonality = gr.Number(label="Seasonality", value=
|
| 213 |
|
|
|
|
| 214 |
with gr.Row():
|
| 215 |
-
use_window_avg = gr.Checkbox(label="
|
| 216 |
window_size = gr.Number(label="Window Size", value=3)
|
| 217 |
|
| 218 |
with gr.Row():
|
| 219 |
-
use_seasonal_window_avg = gr.Checkbox(label="
|
| 220 |
seasonal_window_size = gr.Number(label="Seasonal Window Size", value=2)
|
| 221 |
|
| 222 |
-
|
| 223 |
-
|
|
|
|
|
|
|
| 224 |
|
| 225 |
-
submit_btn = gr.Button("Run Forecast", variant="primary")
|
| 226 |
|
| 227 |
with gr.Column(scale=3):
|
| 228 |
message_output = gr.Textbox(label="Status Message")
|
|
@@ -230,13 +344,64 @@ with gr.Blocks(title="Extrapolative Forecasts for One or Many Time Series") as a
|
|
| 230 |
with gr.Tabs() as tabs:
|
| 231 |
with gr.TabItem("Validation Results"):
|
| 232 |
eval_output = gr.Dataframe(label="Evaluation Metrics")
|
| 233 |
-
validation_output = gr.Dataframe(label="Validation Data")
|
| 234 |
validation_plot = gr.Plot(label="Validation Plot")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
|
| 236 |
with gr.TabItem("Future Forecast"):
|
| 237 |
-
forecast_output = gr.Dataframe(label="Future Forecast Data")
|
| 238 |
forecast_plot = gr.Plot(label="Future Forecast Plot")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
|
|
|
| 240 |
submit_btn.click(
|
| 241 |
fn=run_forecast,
|
| 242 |
inputs=[
|
|
@@ -245,7 +410,7 @@ with gr.Blocks(title="Extrapolative Forecasts for One or Many Time Series") as a
|
|
| 245 |
use_window_avg, window_size, use_seasonal_window_avg, seasonal_window_size,
|
| 246 |
use_autoets, use_autoarima, future_horizon
|
| 247 |
],
|
| 248 |
-
outputs=[eval_output, validation_output, validation_plot, forecast_output, forecast_plot, message_output]
|
| 249 |
)
|
| 250 |
|
| 251 |
if __name__ == "__main__":
|
|
|
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
import gradio as gr
|
| 4 |
import tempfile
|
| 5 |
+
import os
|
| 6 |
+
from datetime import datetime
|
| 7 |
|
| 8 |
from statsforecast import StatsForecast
|
| 9 |
from statsforecast.models import (
|
|
|
|
| 29 |
missing_cols = [col for col in required_cols if col not in df.columns]
|
| 30 |
if missing_cols:
|
| 31 |
return None, f"Missing required columns: {', '.join(missing_cols)}"
|
| 32 |
+
|
| 33 |
df['ds'] = pd.to_datetime(df['ds'])
|
| 34 |
+
df = df.sort_values(['unique_id', 'ds']).reset_index(drop=True)
|
| 35 |
+
|
| 36 |
+
# Check for NaN values
|
| 37 |
+
if df['y'].isna().any():
|
| 38 |
+
return None, "Data contains missing values in the 'y' column"
|
| 39 |
+
|
| 40 |
return df, "Data loaded successfully!"
|
| 41 |
except Exception as e:
|
| 42 |
return None, f"Error loading data: {str(e)}"
|
| 43 |
|
| 44 |
# Function to generate and return a plot
|
| 45 |
def create_forecast_plot(forecast_df, original_df, title="Forecasting Results"):
|
| 46 |
+
plt.figure(figsize=(12, 7))
|
| 47 |
unique_ids = forecast_df['unique_id'].unique()
|
| 48 |
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds', 'cutoff']]
|
| 49 |
+
|
| 50 |
+
colors = plt.cm.tab10.colors
|
| 51 |
+
|
| 52 |
+
for i, unique_id in enumerate(unique_ids):
|
| 53 |
original_data = original_df[original_df['unique_id'] == unique_id]
|
| 54 |
+
plt.plot(original_data['ds'], original_data['y'], 'k-', linewidth=2, label=f'{unique_id} (Actual)')
|
| 55 |
+
|
| 56 |
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
|
| 57 |
+
for j, col in enumerate(forecast_cols):
|
| 58 |
if col in forecast_data.columns:
|
| 59 |
+
plt.plot(forecast_data['ds'], forecast_data[col],
|
| 60 |
+
color=colors[j % len(colors)],
|
| 61 |
+
linestyle='--',
|
| 62 |
+
linewidth=1.5,
|
| 63 |
+
label=f'{col}')
|
| 64 |
|
| 65 |
+
plt.title(title, fontsize=16)
|
| 66 |
+
plt.xlabel('Date', fontsize=12)
|
| 67 |
+
plt.ylabel('Value', fontsize=12)
|
| 68 |
+
plt.grid(True, alpha=0.3)
|
| 69 |
+
plt.legend(loc='best')
|
| 70 |
+
plt.tight_layout()
|
| 71 |
+
|
| 72 |
+
# Format date labels better
|
| 73 |
fig = plt.gcf()
|
| 74 |
+
ax = plt.gca()
|
| 75 |
+
fig.autofmt_xdate()
|
| 76 |
+
|
| 77 |
return fig
|
| 78 |
|
| 79 |
# Function to create a plot for future forecasts
|
| 80 |
def create_future_forecast_plot(forecast_df, original_df):
|
| 81 |
+
plt.figure(figsize=(12, 7))
|
| 82 |
unique_ids = forecast_df['unique_id'].unique()
|
| 83 |
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds']]
|
| 84 |
+
|
| 85 |
+
colors = plt.cm.tab10.colors
|
| 86 |
+
|
| 87 |
+
for i, unique_id in enumerate(unique_ids):
|
| 88 |
# Plot historical data
|
| 89 |
original_data = original_df[original_df['unique_id'] == unique_id]
|
| 90 |
+
plt.plot(original_data['ds'], original_data['y'], 'k-', linewidth=2, label=f'{unique_id} (Historical)')
|
| 91 |
|
| 92 |
+
# Plot forecast data with shaded vertical line separator
|
| 93 |
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
|
| 94 |
+
|
| 95 |
+
# Add vertical line at the forecast start
|
| 96 |
+
if not forecast_data.empty and not original_data.empty:
|
| 97 |
+
forecast_start = forecast_data['ds'].min()
|
| 98 |
+
plt.axvline(x=forecast_start, color='gray', linestyle='--', alpha=0.5)
|
| 99 |
+
|
| 100 |
+
for j, col in enumerate(forecast_cols):
|
| 101 |
if col in forecast_data.columns:
|
| 102 |
+
plt.plot(forecast_data['ds'], forecast_data[col],
|
| 103 |
+
color=colors[j % len(colors)],
|
| 104 |
+
linestyle='--',
|
| 105 |
+
linewidth=1.5,
|
| 106 |
+
label=f'{col}')
|
| 107 |
|
| 108 |
+
plt.title('Future Forecast', fontsize=16)
|
| 109 |
+
plt.xlabel('Date', fontsize=12)
|
| 110 |
+
plt.ylabel('Value', fontsize=12)
|
| 111 |
+
plt.grid(True, alpha=0.3)
|
| 112 |
+
plt.legend(loc='best')
|
| 113 |
+
plt.tight_layout()
|
| 114 |
+
|
| 115 |
+
# Format date labels better
|
| 116 |
fig = plt.gcf()
|
| 117 |
+
ax = plt.gca()
|
| 118 |
+
fig.autofmt_xdate()
|
| 119 |
+
|
| 120 |
return fig
|
| 121 |
|
| 122 |
+
# Function to export results to CSV
|
| 123 |
+
def export_results(eval_df, cv_results, future_forecasts):
|
| 124 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 125 |
+
|
| 126 |
+
# Create temp directory if it doesn't exist
|
| 127 |
+
temp_dir = tempfile.mkdtemp()
|
| 128 |
+
|
| 129 |
+
files = {}
|
| 130 |
+
|
| 131 |
+
if eval_df is not None:
|
| 132 |
+
eval_path = os.path.join(temp_dir, f"evaluation_metrics_{timestamp}.csv")
|
| 133 |
+
eval_df.to_csv(eval_path, index=False)
|
| 134 |
+
files["evaluation"] = eval_path
|
| 135 |
+
|
| 136 |
+
if cv_results is not None:
|
| 137 |
+
cv_path = os.path.join(temp_dir, f"cross_validation_results_{timestamp}.csv")
|
| 138 |
+
cv_results.to_csv(cv_path, index=False)
|
| 139 |
+
files["validation"] = cv_path
|
| 140 |
+
|
| 141 |
+
if future_forecasts is not None:
|
| 142 |
+
forecast_path = os.path.join(temp_dir, f"forecasts_{timestamp}.csv")
|
| 143 |
+
future_forecasts.to_csv(forecast_path, index=False)
|
| 144 |
+
files["forecast"] = forecast_path
|
| 145 |
+
|
| 146 |
+
return files
|
| 147 |
+
|
| 148 |
# Main forecasting logic
|
| 149 |
def run_forecast(
|
| 150 |
file,
|
|
|
|
| 167 |
):
|
| 168 |
df, message = load_data(file)
|
| 169 |
if df is None:
|
| 170 |
+
return None, None, None, None, None, None, message
|
| 171 |
|
| 172 |
models = []
|
| 173 |
model_aliases = []
|
|
|
|
| 195 |
model_aliases.append('autoarima')
|
| 196 |
|
| 197 |
if not models:
|
| 198 |
+
return None, None, None, None, None, None, "Please select at least one forecasting model"
|
| 199 |
|
| 200 |
sf = StatsForecast(models=models, freq=frequency, n_jobs=-1)
|
| 201 |
|
|
|
|
| 213 |
fig_validation = create_forecast_plot(cv_results, df, "Fixed Window Validation Results")
|
| 214 |
|
| 215 |
# Generate future forecasts
|
| 216 |
+
future_forecasts = sf.forecast(df=df, h=future_horizon)
|
| 217 |
fig_future = create_future_forecast_plot(future_forecasts, df)
|
| 218 |
|
| 219 |
+
# Export results
|
| 220 |
+
export_files = export_results(eval_df, cv_results, future_forecasts)
|
| 221 |
+
|
| 222 |
+
return eval_df, cv_results, fig_validation, future_forecasts, fig_future, export_files, "Analysis completed successfully!"
|
| 223 |
|
| 224 |
except Exception as e:
|
| 225 |
+
return None, None, None, None, None, None, f"Error during forecasting: {str(e)}"
|
| 226 |
|
| 227 |
# Sample CSV file generation
|
| 228 |
def download_sample():
|
| 229 |
sample_data = """unique_id,ds,y
|
| 230 |
+
series1,2025-01-01,100
|
| 231 |
+
series1,2025-01-02,105
|
| 232 |
+
series1,2025-01-03,102
|
| 233 |
+
series1,2025-01-04,107
|
| 234 |
+
series1,2025-01-05,104
|
| 235 |
+
series1,2025-01-06,110
|
| 236 |
+
series1,2025-01-07,108
|
| 237 |
+
series1,2025-01-08,112
|
| 238 |
+
series1,2025-01-09,115
|
| 239 |
+
series1,2025-01-10,118
|
| 240 |
+
series1,2025-01-11,120
|
| 241 |
+
series1,2025-01-12,123
|
| 242 |
+
series1,2025-01-13,126
|
| 243 |
+
series1,2025-01-14,129
|
| 244 |
+
series1,2025-01-15,131
|
| 245 |
+
series2,2025-01-01,200
|
| 246 |
+
series2,2025-01-02,195
|
| 247 |
+
series2,2025-01-03,205
|
| 248 |
+
series2,2025-01-04,210
|
| 249 |
+
series2,2025-01-05,215
|
| 250 |
+
series2,2025-01-06,212
|
| 251 |
+
series2,2025-01-07,208
|
| 252 |
+
series2,2025-01-08,215
|
| 253 |
+
series2,2025-01-09,220
|
| 254 |
+
series2,2025-01-10,218
|
| 255 |
+
series2,2025-01-11,225
|
| 256 |
+
series2,2025-01-12,230
|
| 257 |
+
series2,2025-01-13,235
|
| 258 |
+
series2,2025-01-14,232
|
| 259 |
+
series2,2025-01-15,240
|
| 260 |
"""
|
| 261 |
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='w', newline='')
|
| 262 |
temp.write(sample_data)
|
| 263 |
temp.close()
|
| 264 |
return temp.name
|
| 265 |
|
| 266 |
+
# Global theme
|
| 267 |
+
theme = gr.themes.Soft(
|
| 268 |
+
primary_hue="blue",
|
| 269 |
+
secondary_hue="indigo",
|
| 270 |
+
neutral_hue="gray"
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
# Gradio interface
|
| 274 |
+
with gr.Blocks(title="Time Series Forecasting App", theme=theme) as app:
|
| 275 |
+
gr.Markdown("# 📈 Time Series Forecasting App")
|
| 276 |
gr.Markdown("Upload a CSV with `unique_id`, `ds`, and `y` columns to apply forecasting models.")
|
| 277 |
|
| 278 |
with gr.Row():
|
| 279 |
with gr.Column(scale=2):
|
| 280 |
file_input = gr.File(label="Upload CSV file", file_types=[".csv"])
|
| 281 |
|
| 282 |
+
download_btn = gr.Button("Download Sample Data", variant="secondary")
|
| 283 |
download_output = gr.File(label="Click to download", visible=True)
|
| 284 |
download_btn.click(fn=download_sample, outputs=download_output)
|
| 285 |
|
| 286 |
with gr.Accordion("Data & Validation Settings", open=True):
|
| 287 |
+
frequency = gr.Dropdown(
|
| 288 |
+
choices=[
|
| 289 |
+
("Hourly", "H"),
|
| 290 |
+
("Daily", "D"),
|
| 291 |
+
("Weekly", "WS"),
|
| 292 |
+
("Monthly", "MS"),
|
| 293 |
+
("Quarterly", "QS"),
|
| 294 |
+
("Yearly", "YS")
|
| 295 |
+
],
|
| 296 |
+
label="Data Frequency",
|
| 297 |
+
value="D"
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
eval_strategy = gr.Radio(
|
| 301 |
+
choices=["Fixed Window", "Cross Validation"],
|
| 302 |
+
label="Evaluation Strategy",
|
| 303 |
+
value="Cross Validation"
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
with gr.Row():
|
| 307 |
+
horizon = gr.Slider(1, 100, value=10, step=1, label="Validation Horizon")
|
| 308 |
+
future_horizon = gr.Slider(1, 100, value=20, step=1, label="Future Forecast Horizon")
|
| 309 |
+
|
| 310 |
+
with gr.Row(visible=lambda: eval_strategy == "Cross Validation"):
|
| 311 |
+
step_size = gr.Slider(1, 50, value=10, step=1, label="Step Size")
|
| 312 |
+
num_windows = gr.Slider(1, 20, value=3, step=1, label="Number of Windows")
|
| 313 |
|
| 314 |
with gr.Accordion("Model Configuration", open=True):
|
| 315 |
+
gr.Markdown("### Basic Models")
|
| 316 |
+
with gr.Row():
|
| 317 |
+
use_historical_avg = gr.Checkbox(label="Historical Average", value=True)
|
| 318 |
+
use_naive = gr.Checkbox(label="Naive", value=True)
|
| 319 |
|
| 320 |
+
gr.Markdown("### Seasonal Models")
|
| 321 |
with gr.Row():
|
| 322 |
+
use_seasonal_naive = gr.Checkbox(label="Seasonal Naive")
|
| 323 |
+
seasonality = gr.Number(label="Seasonality Period", value=7)
|
| 324 |
|
| 325 |
+
gr.Markdown("### Window-based Models")
|
| 326 |
with gr.Row():
|
| 327 |
+
use_window_avg = gr.Checkbox(label="Window Average")
|
| 328 |
window_size = gr.Number(label="Window Size", value=3)
|
| 329 |
|
| 330 |
with gr.Row():
|
| 331 |
+
use_seasonal_window_avg = gr.Checkbox(label="Seasonal Window Average")
|
| 332 |
seasonal_window_size = gr.Number(label="Seasonal Window Size", value=2)
|
| 333 |
|
| 334 |
+
gr.Markdown("### Advanced Models")
|
| 335 |
+
with gr.Row():
|
| 336 |
+
use_autoets = gr.Checkbox(label="AutoETS (Exponential Smoothing)")
|
| 337 |
+
use_autoarima = gr.Checkbox(label="AutoARIMA")
|
| 338 |
|
| 339 |
+
submit_btn = gr.Button("Run Forecast", variant="primary", size="lg")
|
| 340 |
|
| 341 |
with gr.Column(scale=3):
|
| 342 |
message_output = gr.Textbox(label="Status Message")
|
|
|
|
| 344 |
with gr.Tabs() as tabs:
|
| 345 |
with gr.TabItem("Validation Results"):
|
| 346 |
eval_output = gr.Dataframe(label="Evaluation Metrics")
|
|
|
|
| 347 |
validation_plot = gr.Plot(label="Validation Plot")
|
| 348 |
+
validation_output = gr.Dataframe(label="Validation Data", visible=False)
|
| 349 |
+
|
| 350 |
+
with gr.Row():
|
| 351 |
+
show_data_btn = gr.Button("Show Validation Data")
|
| 352 |
+
hide_data_btn = gr.Button("Hide Validation Data", visible=False)
|
| 353 |
+
|
| 354 |
+
def show_data():
|
| 355 |
+
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
|
| 356 |
+
|
| 357 |
+
def hide_data():
|
| 358 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
| 359 |
+
|
| 360 |
+
show_data_btn.click(
|
| 361 |
+
fn=show_data,
|
| 362 |
+
outputs=[validation_output, hide_data_btn, show_data_btn]
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
hide_data_btn.click(
|
| 366 |
+
fn=hide_data,
|
| 367 |
+
outputs=[validation_output, hide_data_btn, show_data_btn]
|
| 368 |
+
)
|
| 369 |
|
| 370 |
with gr.TabItem("Future Forecast"):
|
|
|
|
| 371 |
forecast_plot = gr.Plot(label="Future Forecast Plot")
|
| 372 |
+
forecast_output = gr.Dataframe(label="Future Forecast Data", visible=False)
|
| 373 |
+
|
| 374 |
+
with gr.Row():
|
| 375 |
+
show_forecast_btn = gr.Button("Show Forecast Data")
|
| 376 |
+
hide_forecast_btn = gr.Button("Hide Forecast Data", visible=False)
|
| 377 |
+
|
| 378 |
+
def show_forecast():
|
| 379 |
+
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
|
| 380 |
+
|
| 381 |
+
def hide_forecast():
|
| 382 |
+
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
| 383 |
+
|
| 384 |
+
show_forecast_btn.click(
|
| 385 |
+
fn=show_forecast,
|
| 386 |
+
outputs=[forecast_output, hide_forecast_btn, show_forecast_btn]
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
hide_forecast_btn.click(
|
| 390 |
+
fn=hide_forecast,
|
| 391 |
+
outputs=[forecast_output, hide_forecast_btn, show_forecast_btn]
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
with gr.TabItem("Export Results"):
|
| 395 |
+
export_files = gr.Files(label="Download Results")
|
| 396 |
+
|
| 397 |
+
# Update visibility of step_size and num_windows based on eval_strategy
|
| 398 |
+
eval_strategy.change(
|
| 399 |
+
fn=lambda x: gr.update(visible=x == "Cross Validation"),
|
| 400 |
+
inputs=[eval_strategy],
|
| 401 |
+
outputs=[gr.Row.update(visible=lambda: eval_strategy == "Cross Validation")]
|
| 402 |
+
)
|
| 403 |
|
| 404 |
+
# Run forecast when button is clicked
|
| 405 |
submit_btn.click(
|
| 406 |
fn=run_forecast,
|
| 407 |
inputs=[
|
|
|
|
| 410 |
use_window_avg, window_size, use_seasonal_window_avg, seasonal_window_size,
|
| 411 |
use_autoets, use_autoarima, future_horizon
|
| 412 |
],
|
| 413 |
+
outputs=[eval_output, validation_output, validation_plot, forecast_output, forecast_plot, export_files, message_output]
|
| 414 |
)
|
| 415 |
|
| 416 |
if __name__ == "__main__":
|