Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,6 @@ import pandas as pd
|
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
import gradio as gr
|
| 4 |
import tempfile
|
| 5 |
-
from datetime import datetime
|
| 6 |
|
| 7 |
from statsforecast import StatsForecast
|
| 8 |
from statsforecast.models import (
|
|
@@ -35,126 +34,18 @@ def load_data(file):
|
|
| 35 |
return None, f"Error loading data: {str(e)}"
|
| 36 |
|
| 37 |
# Function to generate and return a plot
|
| 38 |
-
def create_forecast_plot(forecast_df, original_df
|
| 39 |
-
if forecast_df is None or original_df is None:
|
| 40 |
-
return None
|
| 41 |
-
|
| 42 |
plt.figure(figsize=(10, 6))
|
| 43 |
unique_ids = forecast_df['unique_id'].unique()
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
if selected_cutoff is not None and selected_cutoff in cutoffs:
|
| 54 |
-
cutoff_to_use = selected_cutoff
|
| 55 |
-
else:
|
| 56 |
-
cutoff_to_use = max(cutoffs)
|
| 57 |
-
|
| 58 |
-
# Get model names - StatsForecast uses dash (-) not underscore (_)
|
| 59 |
-
model_names = set()
|
| 60 |
-
for col in forecast_df.columns:
|
| 61 |
-
if col not in ['unique_id', 'ds', 'cutoff', 'y'] and '-' in col:
|
| 62 |
-
model_name = col.split('-')[0]
|
| 63 |
-
model_names.add(model_name)
|
| 64 |
-
|
| 65 |
-
# Print some debug info
|
| 66 |
-
print(f"Available columns: {forecast_df.columns.tolist()}")
|
| 67 |
-
print(f"Detected model names: {model_names}")
|
| 68 |
-
print(f"Selected cutoff: {cutoff_to_use}")
|
| 69 |
-
|
| 70 |
-
for unique_id in unique_ids:
|
| 71 |
-
# Filter forecast data for the selected cutoff
|
| 72 |
-
forecast_data = forecast_df[(forecast_df['unique_id'] == unique_id) &
|
| 73 |
-
(forecast_df['cutoff'] == cutoff_to_use)]
|
| 74 |
-
|
| 75 |
-
if forecast_data.empty:
|
| 76 |
-
print(f"No forecast data for unique_id={unique_id} and cutoff={cutoff_to_use}")
|
| 77 |
-
continue
|
| 78 |
-
|
| 79 |
-
# Get original data
|
| 80 |
-
original_data = original_df[original_df['unique_id'] == unique_id].copy()
|
| 81 |
-
|
| 82 |
-
# Determine the forecast horizon based on the available data
|
| 83 |
-
horizons = []
|
| 84 |
-
for col in forecast_data.columns:
|
| 85 |
-
if '-' in col:
|
| 86 |
-
try:
|
| 87 |
-
h = int(col.split('-')[1])
|
| 88 |
-
horizons.append(h)
|
| 89 |
-
except (ValueError, IndexError):
|
| 90 |
-
continue
|
| 91 |
-
|
| 92 |
-
if not horizons:
|
| 93 |
-
print(f"No valid horizons found for models")
|
| 94 |
-
continue
|
| 95 |
-
|
| 96 |
-
max_horizon = max(horizons)
|
| 97 |
-
|
| 98 |
-
# Split original data into "before cutoff" and "after cutoff"
|
| 99 |
-
train_data = original_data[original_data['ds'] <= cutoff_to_use]
|
| 100 |
-
test_data = original_data[original_data['ds'] > cutoff_to_use]
|
| 101 |
-
|
| 102 |
-
# Limit test data to horizon length
|
| 103 |
-
test_data = test_data.iloc[:max_horizon]
|
| 104 |
-
|
| 105 |
-
# Plot training data
|
| 106 |
-
plt.plot(train_data['ds'], train_data['y'], 'k-', label='Historical Data')
|
| 107 |
-
|
| 108 |
-
# Plot test data (actual values during forecast period)
|
| 109 |
-
if not test_data.empty:
|
| 110 |
-
plt.plot(test_data['ds'], test_data['y'], 'k--', label='Actual (Test)')
|
| 111 |
-
|
| 112 |
-
# Plot forecasts for each model
|
| 113 |
-
for model in model_names:
|
| 114 |
-
model_forecast_data = []
|
| 115 |
-
model_forecast_dates = []
|
| 116 |
-
|
| 117 |
-
# Get columns for this model with different horizons
|
| 118 |
-
for h in range(1, max_horizon + 1):
|
| 119 |
-
col = f"{model}-{h}"
|
| 120 |
-
if col in forecast_data.columns:
|
| 121 |
-
# There is only one row per unique_id and cutoff
|
| 122 |
-
forecast_value = forecast_data[col].iloc[0] if not forecast_data.empty else None
|
| 123 |
-
if forecast_value is not None:
|
| 124 |
-
# Calculate the date for this horizon step
|
| 125 |
-
# Use the frequency from original data to set the timedelta
|
| 126 |
-
if frequency == 'D':
|
| 127 |
-
forecast_date = cutoff_to_use + pd.Timedelta(days=h)
|
| 128 |
-
elif frequency == 'H':
|
| 129 |
-
forecast_date = cutoff_to_use + pd.Timedelta(hours=h)
|
| 130 |
-
elif frequency == 'WS':
|
| 131 |
-
forecast_date = cutoff_to_use + pd.Timedelta(weeks=h)
|
| 132 |
-
elif frequency == 'MS':
|
| 133 |
-
forecast_date = cutoff_to_use + pd.DateOffset(months=h)
|
| 134 |
-
elif frequency == 'QS':
|
| 135 |
-
forecast_date = cutoff_to_use + pd.DateOffset(months=3*h)
|
| 136 |
-
elif frequency == 'YS':
|
| 137 |
-
forecast_date = cutoff_to_use + pd.DateOffset(years=h)
|
| 138 |
-
else:
|
| 139 |
-
forecast_date = cutoff_to_use + pd.Timedelta(days=h)
|
| 140 |
-
|
| 141 |
-
model_forecast_dates.append(forecast_date)
|
| 142 |
-
model_forecast_data.append(forecast_value)
|
| 143 |
-
|
| 144 |
-
if model_forecast_data:
|
| 145 |
-
plt.plot(model_forecast_dates, model_forecast_data, '-o', label=model)
|
| 146 |
-
|
| 147 |
-
else:
|
| 148 |
-
# For fixed window format
|
| 149 |
-
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds', 'cutoff', 'y']]
|
| 150 |
-
|
| 151 |
-
for unique_id in unique_ids:
|
| 152 |
-
original_data = original_df[original_df['unique_id'] == unique_id]
|
| 153 |
-
plt.plot(original_data['ds'], original_data['y'], 'k-', label='Actual')
|
| 154 |
-
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
|
| 155 |
-
for col in forecast_cols:
|
| 156 |
-
if col in forecast_data.columns:
|
| 157 |
-
plt.plot(forecast_data['ds'], forecast_data[col], label=col)
|
| 158 |
|
| 159 |
plt.title('Forecasting Results')
|
| 160 |
plt.xlabel('Date')
|
|
@@ -164,26 +55,10 @@ def create_forecast_plot(forecast_df, original_df, selected_cutoff=None):
|
|
| 164 |
fig = plt.gcf()
|
| 165 |
return fig
|
| 166 |
|
| 167 |
-
# Function to update plot when cutoff is selected
|
| 168 |
-
def update_plot(forecast_df, original_df, selected_cutoff, freq):
|
| 169 |
-
if forecast_df is None or original_df is None:
|
| 170 |
-
return None
|
| 171 |
-
|
| 172 |
-
# Convert the selected cutoff string back to datetime if needed
|
| 173 |
-
if isinstance(selected_cutoff, str) and 'cutoff' in forecast_df.columns:
|
| 174 |
-
# If forecast_df cutoffs are datetime objects
|
| 175 |
-
if isinstance(forecast_df['cutoff'].iloc[0], pd.Timestamp):
|
| 176 |
-
selected_cutoff = pd.to_datetime(selected_cutoff)
|
| 177 |
-
|
| 178 |
-
return create_forecast_plot(forecast_df, original_df, selected_cutoff)
|
| 179 |
-
|
| 180 |
-
# Global variable to store frequency
|
| 181 |
-
frequency = 'D'
|
| 182 |
-
|
| 183 |
# Main forecasting logic
|
| 184 |
def run_forecast(
|
| 185 |
file,
|
| 186 |
-
|
| 187 |
eval_strategy,
|
| 188 |
horizon,
|
| 189 |
step_size,
|
|
@@ -199,12 +74,9 @@ def run_forecast(
|
|
| 199 |
use_autoets,
|
| 200 |
use_autoarima
|
| 201 |
):
|
| 202 |
-
global frequency
|
| 203 |
-
frequency = freq # Store for use in create_forecast_plot
|
| 204 |
-
|
| 205 |
df, message = load_data(file)
|
| 206 |
if df is None:
|
| 207 |
-
return None, None, None,
|
| 208 |
|
| 209 |
models = []
|
| 210 |
model_aliases = []
|
|
@@ -232,7 +104,7 @@ def run_forecast(
|
|
| 232 |
model_aliases.append('autoarima')
|
| 233 |
|
| 234 |
if not models:
|
| 235 |
-
return None, None, None,
|
| 236 |
|
| 237 |
sf = StatsForecast(models=models, freq=frequency, n_jobs=-1)
|
| 238 |
|
|
@@ -241,28 +113,13 @@ def run_forecast(
|
|
| 241 |
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
|
| 242 |
evaluation = evaluate(df=cv_results, metrics=[bias, mae, rmse, mape], models=model_aliases)
|
| 243 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
cutoffs = sorted(cv_results['cutoff'].unique())
|
| 247 |
-
cutoff_strs = [str(cutoff) for cutoff in cutoffs]
|
| 248 |
-
|
| 249 |
-
# Create dropdown with cutoff dates
|
| 250 |
-
cutoff_dropdown = gr.Dropdown(
|
| 251 |
-
choices=cutoff_strs,
|
| 252 |
-
value=cutoff_strs[-1] if cutoff_strs else None,
|
| 253 |
-
label="Select Window Cutoff Date",
|
| 254 |
-
visible=True
|
| 255 |
-
)
|
| 256 |
-
|
| 257 |
-
# Default to latest cutoff for initial plot
|
| 258 |
-
fig_forecast = create_forecast_plot(cv_results, df, cutoffs[-1] if cutoffs else None)
|
| 259 |
-
|
| 260 |
-
return eval_df, cv_results, df, fig_forecast, "Cross validation completed successfully!", cutoff_dropdown, frequency
|
| 261 |
|
| 262 |
else: # Fixed window
|
| 263 |
train_size = len(df) - horizon
|
| 264 |
if train_size <= 0:
|
| 265 |
-
return None, None, None,
|
| 266 |
|
| 267 |
train_df = df.iloc[:train_size]
|
| 268 |
test_df = df.iloc[train_size:]
|
|
@@ -270,16 +127,11 @@ def run_forecast(
|
|
| 270 |
forecast = sf.predict(h=horizon)
|
| 271 |
evaluation = evaluate(df=forecast, metrics=[bias, mae, rmse, mape], models=model_aliases)
|
| 272 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
| 273 |
-
|
| 274 |
-
# No cutoff dropdown needed for fixed window
|
| 275 |
-
cutoff_dropdown = gr.Dropdown(visible=False)
|
| 276 |
-
|
| 277 |
fig_forecast = create_forecast_plot(forecast, df)
|
| 278 |
-
|
| 279 |
-
return eval_df, forecast, df, fig_forecast, "Fixed window evaluation completed successfully!", cutoff_dropdown, frequency
|
| 280 |
|
| 281 |
except Exception as e:
|
| 282 |
-
return None, None, None,
|
| 283 |
|
| 284 |
# Sample CSV file generation
|
| 285 |
def download_sample():
|
|
@@ -310,11 +162,6 @@ with gr.Blocks(title="StatsForecast Demo") as app:
|
|
| 310 |
gr.Markdown("# 📈 StatsForecast Demo App")
|
| 311 |
gr.Markdown("Upload a CSV with `unique_id`, `ds`, and `y` columns to apply forecasting models.")
|
| 312 |
|
| 313 |
-
# Store data for reuse between components
|
| 314 |
-
original_df_state = gr.State(None)
|
| 315 |
-
forecast_df_state = gr.State(None)
|
| 316 |
-
frequency_state = gr.State("D")
|
| 317 |
-
|
| 318 |
with gr.Row():
|
| 319 |
with gr.Column(scale=2):
|
| 320 |
file_input = gr.File(label="Upload CSV file", file_types=[".csv"])
|
|
@@ -323,12 +170,13 @@ with gr.Blocks(title="StatsForecast Demo") as app:
|
|
| 323 |
download_output = gr.File(label="Click to download", visible=True)
|
| 324 |
download_btn.click(fn=download_sample, outputs=download_output)
|
| 325 |
|
| 326 |
-
|
| 327 |
eval_strategy = gr.Radio(choices=["Fixed Window", "Cross Validation"], label="Evaluation Strategy", value="Cross Validation")
|
| 328 |
horizon = gr.Slider(1, 100, value=14, step=1, label="Horizon")
|
| 329 |
step_size = gr.Slider(1, 50, value=5, step=1, label="Step Size")
|
| 330 |
num_windows = gr.Slider(1, 20, value=3, step=1, label="Number of Windows")
|
| 331 |
|
|
|
|
| 332 |
gr.Markdown("### Model Configuration")
|
| 333 |
use_historical_avg = gr.Checkbox(label="Use Historical Average", value=True)
|
| 334 |
use_naive = gr.Checkbox(label="Use Naive", value=True)
|
|
@@ -344,35 +192,20 @@ with gr.Blocks(title="StatsForecast Demo") as app:
|
|
| 344 |
submit_btn = gr.Button("Run Forecast")
|
| 345 |
|
| 346 |
with gr.Column(scale=3):
|
| 347 |
-
# Add cutoff selector dropdown (initially hidden)
|
| 348 |
-
cutoff_selector = gr.Dropdown(
|
| 349 |
-
choices=[],
|
| 350 |
-
label="Select Window Cutoff Date",
|
| 351 |
-
visible=False
|
| 352 |
-
)
|
| 353 |
-
|
| 354 |
eval_output = gr.Dataframe(label="Evaluation Results")
|
| 355 |
forecast_output = gr.Dataframe(label="Forecast Data")
|
| 356 |
plot_output = gr.Plot(label="Forecast Plot")
|
| 357 |
message_output = gr.Textbox(label="Message")
|
| 358 |
|
| 359 |
-
# Run forecast button click event
|
| 360 |
submit_btn.click(
|
| 361 |
fn=run_forecast,
|
| 362 |
inputs=[
|
| 363 |
-
file_input,
|
| 364 |
use_historical_avg, use_naive, use_seasonal_naive, seasonality,
|
| 365 |
use_window_avg, window_size, use_seasonal_window_avg, seasonal_window_size,
|
| 366 |
use_autoets, use_autoarima
|
| 367 |
],
|
| 368 |
-
outputs=[eval_output,
|
| 369 |
-
)
|
| 370 |
-
|
| 371 |
-
# Cutoff selector change event
|
| 372 |
-
cutoff_selector.change(
|
| 373 |
-
fn=update_plot,
|
| 374 |
-
inputs=[forecast_df_state, original_df_state, cutoff_selector, frequency_state],
|
| 375 |
-
outputs=[plot_output]
|
| 376 |
)
|
| 377 |
|
| 378 |
if __name__ == "__main__":
|
|
|
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
import gradio as gr
|
| 4 |
import tempfile
|
|
|
|
| 5 |
|
| 6 |
from statsforecast import StatsForecast
|
| 7 |
from statsforecast.models import (
|
|
|
|
| 34 |
return None, f"Error loading data: {str(e)}"
|
| 35 |
|
| 36 |
# Function to generate and return a plot
|
| 37 |
+
def create_forecast_plot(forecast_df, original_df):
|
|
|
|
|
|
|
|
|
|
| 38 |
plt.figure(figsize=(10, 6))
|
| 39 |
unique_ids = forecast_df['unique_id'].unique()
|
| 40 |
+
forecast_cols = [col for col in forecast_df.columns if col not in ['unique_id', 'ds', 'cutoff']]
|
| 41 |
+
|
| 42 |
+
for unique_id in unique_ids:
|
| 43 |
+
original_data = original_df[original_df['unique_id'] == unique_id]
|
| 44 |
+
plt.plot(original_data['ds'], original_data['y'], 'k-', label='Actual')
|
| 45 |
+
forecast_data = forecast_df[forecast_df['unique_id'] == unique_id]
|
| 46 |
+
for col in forecast_cols:
|
| 47 |
+
if col in forecast_data.columns:
|
| 48 |
+
plt.plot(forecast_data['ds'], forecast_data[col], label=col)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
plt.title('Forecasting Results')
|
| 51 |
plt.xlabel('Date')
|
|
|
|
| 55 |
fig = plt.gcf()
|
| 56 |
return fig
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
# Main forecasting logic
|
| 59 |
def run_forecast(
|
| 60 |
file,
|
| 61 |
+
frequency,
|
| 62 |
eval_strategy,
|
| 63 |
horizon,
|
| 64 |
step_size,
|
|
|
|
| 74 |
use_autoets,
|
| 75 |
use_autoarima
|
| 76 |
):
|
|
|
|
|
|
|
|
|
|
| 77 |
df, message = load_data(file)
|
| 78 |
if df is None:
|
| 79 |
+
return None, None, None, message
|
| 80 |
|
| 81 |
models = []
|
| 82 |
model_aliases = []
|
|
|
|
| 104 |
model_aliases.append('autoarima')
|
| 105 |
|
| 106 |
if not models:
|
| 107 |
+
return None, None, None, "Please select at least one forecasting model"
|
| 108 |
|
| 109 |
sf = StatsForecast(models=models, freq=frequency, n_jobs=-1)
|
| 110 |
|
|
|
|
| 113 |
cv_results = sf.cross_validation(df=df, h=horizon, step_size=step_size, n_windows=num_windows)
|
| 114 |
evaluation = evaluate(df=cv_results, metrics=[bias, mae, rmse, mape], models=model_aliases)
|
| 115 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
| 116 |
+
fig_forecast = create_forecast_plot(cv_results, df)
|
| 117 |
+
return eval_df, cv_results, fig_forecast, "Cross validation completed successfully!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
else: # Fixed window
|
| 120 |
train_size = len(df) - horizon
|
| 121 |
if train_size <= 0:
|
| 122 |
+
return None, None, None, f"Not enough data for horizon={horizon}"
|
| 123 |
|
| 124 |
train_df = df.iloc[:train_size]
|
| 125 |
test_df = df.iloc[train_size:]
|
|
|
|
| 127 |
forecast = sf.predict(h=horizon)
|
| 128 |
evaluation = evaluate(df=forecast, metrics=[bias, mae, rmse, mape], models=model_aliases)
|
| 129 |
eval_df = pd.DataFrame(evaluation).reset_index()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
fig_forecast = create_forecast_plot(forecast, df)
|
| 131 |
+
return eval_df, forecast, fig_forecast, "Fixed window evaluation completed successfully!"
|
|
|
|
| 132 |
|
| 133 |
except Exception as e:
|
| 134 |
+
return None, None, None, f"Error during forecasting: {str(e)}"
|
| 135 |
|
| 136 |
# Sample CSV file generation
|
| 137 |
def download_sample():
|
|
|
|
| 162 |
gr.Markdown("# 📈 StatsForecast Demo App")
|
| 163 |
gr.Markdown("Upload a CSV with `unique_id`, `ds`, and `y` columns to apply forecasting models.")
|
| 164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
with gr.Row():
|
| 166 |
with gr.Column(scale=2):
|
| 167 |
file_input = gr.File(label="Upload CSV file", file_types=[".csv"])
|
|
|
|
| 170 |
download_output = gr.File(label="Click to download", visible=True)
|
| 171 |
download_btn.click(fn=download_sample, outputs=download_output)
|
| 172 |
|
| 173 |
+
frequency = gr.Dropdown(choices=["H", "D", "WS", "MS", "QS", "YS"], label="Frequency", value="D")
|
| 174 |
eval_strategy = gr.Radio(choices=["Fixed Window", "Cross Validation"], label="Evaluation Strategy", value="Cross Validation")
|
| 175 |
horizon = gr.Slider(1, 100, value=14, step=1, label="Horizon")
|
| 176 |
step_size = gr.Slider(1, 50, value=5, step=1, label="Step Size")
|
| 177 |
num_windows = gr.Slider(1, 20, value=3, step=1, label="Number of Windows")
|
| 178 |
|
| 179 |
+
|
| 180 |
gr.Markdown("### Model Configuration")
|
| 181 |
use_historical_avg = gr.Checkbox(label="Use Historical Average", value=True)
|
| 182 |
use_naive = gr.Checkbox(label="Use Naive", value=True)
|
|
|
|
| 192 |
submit_btn = gr.Button("Run Forecast")
|
| 193 |
|
| 194 |
with gr.Column(scale=3):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
eval_output = gr.Dataframe(label="Evaluation Results")
|
| 196 |
forecast_output = gr.Dataframe(label="Forecast Data")
|
| 197 |
plot_output = gr.Plot(label="Forecast Plot")
|
| 198 |
message_output = gr.Textbox(label="Message")
|
| 199 |
|
|
|
|
| 200 |
submit_btn.click(
|
| 201 |
fn=run_forecast,
|
| 202 |
inputs=[
|
| 203 |
+
file_input, frequency, eval_strategy, horizon, step_size, num_windows,
|
| 204 |
use_historical_avg, use_naive, use_seasonal_naive, seasonality,
|
| 205 |
use_window_avg, window_size, use_seasonal_window_avg, seasonal_window_size,
|
| 206 |
use_autoets, use_autoarima
|
| 207 |
],
|
| 208 |
+
outputs=[eval_output, forecast_output, plot_output, message_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
)
|
| 210 |
|
| 211 |
if __name__ == "__main__":
|