Spaces:
Sleeping
Sleeping
Sunil Sarolkar
commited on
Commit
Β·
0f38fdf
1
Parent(s):
31fd9d9
updated image references
Browse files
app.py
CHANGED
|
@@ -1,86 +1,80 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from transformers import AutoProcessor,
|
| 4 |
from PIL import Image
|
|
|
|
| 5 |
import time
|
| 6 |
-
import fitz # PyMuPDF for PDF support
|
| 7 |
import io
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
# Define
|
| 10 |
MODELS = {
|
| 11 |
"Pixtral-12B": "mistralai/Pixtral-12B-2409",
|
| 12 |
-
"InternVL-
|
| 13 |
"Aria-7B": "Aria-7B" # Replace with actual model ID when public
|
| 14 |
}
|
| 15 |
|
| 16 |
MODEL_CACHE = {}
|
| 17 |
|
| 18 |
-
# Load models and processors (lazy loading for faster startup)
|
| 19 |
def load_model(model_id):
|
| 20 |
if model_id not in MODEL_CACHE:
|
| 21 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
| 22 |
-
model =
|
| 23 |
MODEL_CACHE[model_id] = (processor, model)
|
| 24 |
return MODEL_CACHE[model_id]
|
| 25 |
|
| 26 |
-
|
| 27 |
def convert_pdf_to_image(pdf_bytes):
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
if
|
| 43 |
-
return {name: "Please provide both image/PDF and prompt." for name in MODELS}, None
|
| 44 |
-
|
| 45 |
-
#
|
| 46 |
-
if
|
| 47 |
-
|
|
|
|
| 48 |
else:
|
| 49 |
-
|
| 50 |
-
if file.name.endswith('.pdf'):
|
| 51 |
-
image = convert_pdf_to_image(file_bytes)
|
| 52 |
-
else:
|
| 53 |
-
image = Image.open(io.BytesIO(file_bytes))
|
| 54 |
-
|
| 55 |
-
image.thumbnail((512, 512)) # optimize
|
| 56 |
|
|
|
|
| 57 |
latency_data = {}
|
|
|
|
| 58 |
|
| 59 |
for name, model_id in MODELS.items():
|
| 60 |
try:
|
| 61 |
processor, model = load_model(model_id)
|
| 62 |
start = time.time()
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
| 68 |
elapsed = time.time() - start
|
| 69 |
results[name] = f"π§ {text}\n\nβ±οΈ {elapsed:.2f}s"
|
| 70 |
latency_data[name] = elapsed
|
| 71 |
-
|
| 72 |
except Exception as e:
|
| 73 |
results[name] = f"β Error: {str(e)}"
|
| 74 |
latency_data[name] = 0
|
| 75 |
|
| 76 |
-
# Return results and latency chart data
|
| 77 |
return [results.get(name, "Model not loaded.") for name in MODELS], latency_data
|
| 78 |
|
| 79 |
-
|
| 80 |
def plot_latency(latency_data):
|
| 81 |
if not latency_data:
|
| 82 |
return None
|
| 83 |
-
import matplotlib.pyplot as plt
|
| 84 |
plt.figure(figsize=(6, 3))
|
| 85 |
plt.bar(latency_data.keys(), latency_data.values())
|
| 86 |
plt.title("Model Inference Latency (s)")
|
|
@@ -88,19 +82,18 @@ def plot_latency(latency_data):
|
|
| 88 |
plt.tight_layout()
|
| 89 |
return plt
|
| 90 |
|
| 91 |
-
|
| 92 |
def build_ui():
|
| 93 |
-
with gr.Blocks(title="Multimodal Model Comparator") as demo:
|
| 94 |
gr.Markdown("""
|
| 95 |
-
#
|
| 96 |
-
|
| 97 |
-
The app compares outputs from **Pixtral-12B**, **InternVL-
|
| 98 |
-
|
| 99 |
_Licenses: Apache 2.0 / MIT β safe for research and demo use._
|
| 100 |
""")
|
| 101 |
|
| 102 |
with gr.Row():
|
| 103 |
-
|
| 104 |
prompt_input = gr.Textbox(label="Prompt", placeholder="Ask something about the image or PDF...")
|
| 105 |
|
| 106 |
with gr.Row():
|
|
@@ -110,25 +103,25 @@ def build_ui():
|
|
| 110 |
|
| 111 |
latency_plot = gr.Plot(label="Latency Comparison")
|
| 112 |
|
| 113 |
-
def process(
|
| 114 |
-
outputs, latency_data = compare_models(
|
| 115 |
plot = plot_latency(latency_data)
|
| 116 |
return outputs[0], outputs[1], outputs[2], plot
|
| 117 |
|
| 118 |
run_button = gr.Button("Run Comparison")
|
| 119 |
-
run_button.click(fn=process, inputs=[
|
| 120 |
|
| 121 |
gr.Examples(
|
| 122 |
examples=[
|
| 123 |
-
["
|
| 124 |
-
["
|
|
|
|
| 125 |
],
|
| 126 |
-
inputs=[
|
| 127 |
)
|
| 128 |
|
| 129 |
return demo
|
| 130 |
|
| 131 |
-
|
| 132 |
if __name__ == "__main__":
|
| 133 |
demo = build_ui()
|
| 134 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoProcessor, AutoModel
|
| 4 |
from PIL import Image
|
| 5 |
+
import requests
|
| 6 |
import time
|
|
|
|
| 7 |
import io
|
| 8 |
+
import fitz # PyMuPDF for PDF support
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
|
| 11 |
+
# Define model repository IDs
|
| 12 |
MODELS = {
|
| 13 |
"Pixtral-12B": "mistralai/Pixtral-12B-2409",
|
| 14 |
+
"InternVL-3.5": "OpenGVLab/InternVL3_5-241B-A28B",
|
| 15 |
"Aria-7B": "Aria-7B" # Replace with actual model ID when public
|
| 16 |
}
|
| 17 |
|
| 18 |
MODEL_CACHE = {}
|
| 19 |
|
|
|
|
| 20 |
def load_model(model_id):
|
| 21 |
if model_id not in MODEL_CACHE:
|
| 22 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 23 |
+
model = AutoModel.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.float16, device_map="auto")
|
| 24 |
MODEL_CACHE[model_id] = (processor, model)
|
| 25 |
return MODEL_CACHE[model_id]
|
| 26 |
|
|
|
|
| 27 |
def convert_pdf_to_image(pdf_bytes):
|
| 28 |
+
pdf_doc = fitz.open(stream=pdf_bytes, filetype="pdf")
|
| 29 |
+
page = pdf_doc.load_page(0)
|
| 30 |
+
pix = page.get_pixmap(dpi=150)
|
| 31 |
+
image_bytes = pix.tobytes("png")
|
| 32 |
+
image = Image.open(io.BytesIO(image_bytes))
|
| 33 |
+
return image
|
| 34 |
+
|
| 35 |
+
def load_image_from_url(url):
|
| 36 |
+
response = requests.get(url)
|
| 37 |
+
if response.status_code != 200:
|
| 38 |
+
raise ValueError(f"Failed to load image from {url}")
|
| 39 |
+
return Image.open(io.BytesIO(response.content))
|
| 40 |
+
|
| 41 |
+
def compare_models(input_url, prompt):
|
| 42 |
+
if not input_url or not prompt:
|
| 43 |
+
return {name: "Please provide both image/PDF URL and prompt." for name in MODELS}, None
|
| 44 |
+
|
| 45 |
+
# Load image or PDF from URL
|
| 46 |
+
if input_url.lower().endswith('.pdf'):
|
| 47 |
+
pdf_data = requests.get(input_url).content
|
| 48 |
+
image = convert_pdf_to_image(pdf_data)
|
| 49 |
else:
|
| 50 |
+
image = load_image_from_url(input_url)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
image.thumbnail((512, 512))
|
| 53 |
latency_data = {}
|
| 54 |
+
results = {}
|
| 55 |
|
| 56 |
for name, model_id in MODELS.items():
|
| 57 |
try:
|
| 58 |
processor, model = load_model(model_id)
|
| 59 |
start = time.time()
|
| 60 |
+
if hasattr(model, 'chat'):
|
| 61 |
+
text = model.chat(processor.tokenizer, image=image, query=prompt)
|
| 62 |
+
else:
|
| 63 |
+
inputs = processor(prompt, image, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
| 64 |
+
outputs = model.generate(**inputs, max_new_tokens=128)
|
| 65 |
+
text = processor.decode(outputs[0], skip_special_tokens=True)
|
| 66 |
elapsed = time.time() - start
|
| 67 |
results[name] = f"π§ {text}\n\nβ±οΈ {elapsed:.2f}s"
|
| 68 |
latency_data[name] = elapsed
|
|
|
|
| 69 |
except Exception as e:
|
| 70 |
results[name] = f"β Error: {str(e)}"
|
| 71 |
latency_data[name] = 0
|
| 72 |
|
|
|
|
| 73 |
return [results.get(name, "Model not loaded.") for name in MODELS], latency_data
|
| 74 |
|
|
|
|
| 75 |
def plot_latency(latency_data):
|
| 76 |
if not latency_data:
|
| 77 |
return None
|
|
|
|
| 78 |
plt.figure(figsize=(6, 3))
|
| 79 |
plt.bar(latency_data.keys(), latency_data.values())
|
| 80 |
plt.title("Model Inference Latency (s)")
|
|
|
|
| 82 |
plt.tight_layout()
|
| 83 |
return plt
|
| 84 |
|
|
|
|
| 85 |
def build_ui():
|
| 86 |
+
with gr.Blocks(title="Multimodal Model Comparator (Online Images)") as demo:
|
| 87 |
gr.Markdown("""
|
| 88 |
+
# π Multimodal Model Comparator (Online Images)
|
| 89 |
+
Enter a **URL** for an image or PDF (must be accessible via HTTPS) and provide a question.
|
| 90 |
+
The app compares outputs from **Pixtral-12B**, **InternVL-3.5**, and **Aria-7B** side-by-side.
|
| 91 |
+
|
| 92 |
_Licenses: Apache 2.0 / MIT β safe for research and demo use._
|
| 93 |
""")
|
| 94 |
|
| 95 |
with gr.Row():
|
| 96 |
+
url_input = gr.Textbox(label="Image or PDF URL", placeholder="https://example.com/sample.jpg")
|
| 97 |
prompt_input = gr.Textbox(label="Prompt", placeholder="Ask something about the image or PDF...")
|
| 98 |
|
| 99 |
with gr.Row():
|
|
|
|
| 103 |
|
| 104 |
latency_plot = gr.Plot(label="Latency Comparison")
|
| 105 |
|
| 106 |
+
def process(input_url, prompt):
|
| 107 |
+
outputs, latency_data = compare_models(input_url, prompt)
|
| 108 |
plot = plot_latency(latency_data)
|
| 109 |
return outputs[0], outputs[1], outputs[2], plot
|
| 110 |
|
| 111 |
run_button = gr.Button("Run Comparison")
|
| 112 |
+
run_button.click(fn=process, inputs=[url_input, prompt_input], outputs=[pixtral_out, internvl_out, aria_out, latency_plot])
|
| 113 |
|
| 114 |
gr.Examples(
|
| 115 |
examples=[
|
| 116 |
+
["https://upload.wikimedia.org/wikipedia/commons/9/99/Unofficial_2023_G20_Logo.png", "Describe this image."],
|
| 117 |
+
["https://upload.wikimedia.org/wikipedia/commons/3/3f/Fronalpstock_big.jpg", "What mountain scene is this?"],
|
| 118 |
+
["https://arxiv.org/pdf/1706.03762.pdf", "What is this paper about?"],
|
| 119 |
],
|
| 120 |
+
inputs=[url_input, prompt_input]
|
| 121 |
)
|
| 122 |
|
| 123 |
return demo
|
| 124 |
|
|
|
|
| 125 |
if __name__ == "__main__":
|
| 126 |
demo = build_ui()
|
| 127 |
demo.launch()
|