Spaces:
Sleeping
Sleeping
Update pipeline/GroundingDINO/groundingdino/util/get_tokenlizer.py
Browse files
pipeline/GroundingDINO/groundingdino/util/get_tokenlizer.py
CHANGED
|
@@ -15,15 +15,13 @@ def get_tokenlizer(text_encoder_type):
|
|
| 15 |
"Unknown type of text_encoder_type: {}".format(type(text_encoder_type))
|
| 16 |
)
|
| 17 |
print("final text_encoder_type: {}".format(text_encoder_type))
|
| 18 |
-
# text_encoder_type
|
| 19 |
tokenizer = AutoTokenizer.from_pretrained(text_encoder_type)
|
| 20 |
return tokenizer
|
| 21 |
|
| 22 |
|
| 23 |
def get_pretrained_language_model(text_encoder_type):
|
| 24 |
if text_encoder_type == "bert-base-uncased" or (os.path.isdir(text_encoder_type) and os.path.exists(text_encoder_type)):
|
| 25 |
-
|
| 26 |
-
return BertModel.from_pretrained("/newdisk3/wcx/models--bert-base-uncased/snapshots/1dbc166cf8765166998eff31ade2eb64c8a40076")
|
| 27 |
if text_encoder_type == "roberta-base":
|
| 28 |
return RobertaModel.from_pretrained(text_encoder_type)
|
| 29 |
|
|
|
|
| 15 |
"Unknown type of text_encoder_type: {}".format(type(text_encoder_type))
|
| 16 |
)
|
| 17 |
print("final text_encoder_type: {}".format(text_encoder_type))
|
|
|
|
| 18 |
tokenizer = AutoTokenizer.from_pretrained(text_encoder_type)
|
| 19 |
return tokenizer
|
| 20 |
|
| 21 |
|
| 22 |
def get_pretrained_language_model(text_encoder_type):
|
| 23 |
if text_encoder_type == "bert-base-uncased" or (os.path.isdir(text_encoder_type) and os.path.exists(text_encoder_type)):
|
| 24 |
+
return BertModel.from_pretrained(text_encoder_type)
|
|
|
|
| 25 |
if text_encoder_type == "roberta-base":
|
| 26 |
return RobertaModel.from_pretrained(text_encoder_type)
|
| 27 |
|