Upload 144 files
Browse filesThis view is limited to 50 files because it contains too many changes.  
							See raw diff
- .gitattributes +30 -0
- app.py +231 -0
- assets/COCO_val2017_000000070229.jpg +3 -0
- assets/COCO_val2017_000000092839.jpg +3 -0
- assets/KITTI2015_000003_10.png +3 -0
- assets/KITTI2015_000147_10.png +3 -0
- extern/DAM2/DA-2K.md +51 -0
- extern/DAM2/LICENSE +201 -0
- extern/DAM2/README.md +201 -0
- extern/DAM2/app.py +88 -0
- extern/DAM2/assets/DA-2K.png +3 -0
- extern/DAM2/assets/examples/demo01.jpg +3 -0
- extern/DAM2/assets/examples/demo02.jpg +3 -0
- extern/DAM2/assets/examples/demo03.jpg +3 -0
- extern/DAM2/assets/examples/demo04.jpg +3 -0
- extern/DAM2/assets/examples/demo05.jpg +3 -0
- extern/DAM2/assets/examples/demo06.jpg +3 -0
- extern/DAM2/assets/examples/demo07.jpg +3 -0
- extern/DAM2/assets/examples/demo08.jpg +3 -0
- extern/DAM2/assets/examples/demo09.jpg +3 -0
- extern/DAM2/assets/examples/demo10.jpg +3 -0
- extern/DAM2/assets/examples/demo11.jpg +3 -0
- extern/DAM2/assets/examples/demo12.jpg +3 -0
- extern/DAM2/assets/examples/demo13.jpg +3 -0
- extern/DAM2/assets/examples/demo14.jpg +3 -0
- extern/DAM2/assets/examples/demo15.jpg +3 -0
- extern/DAM2/assets/examples/demo16.jpg +3 -0
- extern/DAM2/assets/examples/demo17.jpg +3 -0
- extern/DAM2/assets/examples/demo18.jpg +3 -0
- extern/DAM2/assets/examples/demo19.jpg +3 -0
- extern/DAM2/assets/examples/demo20.jpg +3 -0
- extern/DAM2/assets/examples_video/basketball.mp4 +3 -0
- extern/DAM2/assets/examples_video/ferris_wheel.mp4 +3 -0
- extern/DAM2/assets/teaser.png +3 -0
- extern/DAM2/depth_anything_v2/__pycache__/dinov2.cpython-310.pyc +0 -0
- extern/DAM2/depth_anything_v2/__pycache__/dpt.cpython-310.pyc +0 -0
- extern/DAM2/depth_anything_v2/dinov2.py +415 -0
- extern/DAM2/depth_anything_v2/dinov2_layers/__init__.py +11 -0
- extern/DAM2/depth_anything_v2/dinov2_layers/__pycache__/__init__.cpython-310.pyc +0 -0
- extern/DAM2/depth_anything_v2/dinov2_layers/__pycache__/attention.cpython-310.pyc +0 -0
- extern/DAM2/depth_anything_v2/dinov2_layers/__pycache__/block.cpython-310.pyc +0 -0
- extern/DAM2/depth_anything_v2/dinov2_layers/__pycache__/drop_path.cpython-310.pyc +0 -0
- extern/DAM2/depth_anything_v2/dinov2_layers/__pycache__/layer_scale.cpython-310.pyc +0 -0
- extern/DAM2/depth_anything_v2/dinov2_layers/__pycache__/mlp.cpython-310.pyc +0 -0
- extern/DAM2/depth_anything_v2/dinov2_layers/__pycache__/patch_embed.cpython-310.pyc +0 -0
- extern/DAM2/depth_anything_v2/dinov2_layers/__pycache__/swiglu_ffn.cpython-310.pyc +0 -0
- extern/DAM2/depth_anything_v2/dinov2_layers/attention.py +83 -0
- extern/DAM2/depth_anything_v2/dinov2_layers/block.py +252 -0
- extern/DAM2/depth_anything_v2/dinov2_layers/drop_path.py +35 -0
- extern/DAM2/depth_anything_v2/dinov2_layers/layer_scale.py +28 -0
    	
        .gitattributes
    CHANGED
    
    | @@ -33,3 +33,33 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
| 36 | 
            +
            assets/COCO_val2017_000000070229.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 37 | 
            +
            assets/COCO_val2017_000000092839.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 38 | 
            +
            assets/KITTI2015_000003_10.png filter=lfs diff=lfs merge=lfs -text
         | 
| 39 | 
            +
            assets/KITTI2015_000147_10.png filter=lfs diff=lfs merge=lfs -text
         | 
| 40 | 
            +
            extern/DAM2/assets/DA-2K.png filter=lfs diff=lfs merge=lfs -text
         | 
| 41 | 
            +
            extern/DAM2/assets/examples_video/basketball.mp4 filter=lfs diff=lfs merge=lfs -text
         | 
| 42 | 
            +
            extern/DAM2/assets/examples_video/ferris_wheel.mp4 filter=lfs diff=lfs merge=lfs -text
         | 
| 43 | 
            +
            extern/DAM2/assets/examples/demo01.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 44 | 
            +
            extern/DAM2/assets/examples/demo02.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 45 | 
            +
            extern/DAM2/assets/examples/demo03.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 46 | 
            +
            extern/DAM2/assets/examples/demo04.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 47 | 
            +
            extern/DAM2/assets/examples/demo05.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 48 | 
            +
            extern/DAM2/assets/examples/demo06.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 49 | 
            +
            extern/DAM2/assets/examples/demo07.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 50 | 
            +
            extern/DAM2/assets/examples/demo08.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 51 | 
            +
            extern/DAM2/assets/examples/demo09.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 52 | 
            +
            extern/DAM2/assets/examples/demo10.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 53 | 
            +
            extern/DAM2/assets/examples/demo11.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 54 | 
            +
            extern/DAM2/assets/examples/demo12.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 55 | 
            +
            extern/DAM2/assets/examples/demo13.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 56 | 
            +
            extern/DAM2/assets/examples/demo14.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 57 | 
            +
            extern/DAM2/assets/examples/demo15.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 58 | 
            +
            extern/DAM2/assets/examples/demo16.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 59 | 
            +
            extern/DAM2/assets/examples/demo17.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 60 | 
            +
            extern/DAM2/assets/examples/demo18.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 61 | 
            +
            extern/DAM2/assets/examples/demo19.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 62 | 
            +
            extern/DAM2/assets/examples/demo20.jpg filter=lfs diff=lfs merge=lfs -text
         | 
| 63 | 
            +
            extern/DAM2/assets/teaser.png filter=lfs diff=lfs merge=lfs -text
         | 
| 64 | 
            +
            extern/DAM2/metric_depth/assets/compare_zoedepth.png filter=lfs diff=lfs merge=lfs -text
         | 
| 65 | 
            +
            extern/DAM2/metric_depth/dataset/splits/hypersim/train.txt filter=lfs diff=lfs merge=lfs -text
         | 
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,231 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            from os.path import basename, splitext, join
         | 
| 3 | 
            +
            import tempfile
         | 
| 4 | 
            +
            import gradio as gr
         | 
| 5 | 
            +
            import numpy as np
         | 
| 6 | 
            +
            from PIL import Image
         | 
| 7 | 
            +
            import torch
         | 
| 8 | 
            +
            import cv2
         | 
| 9 | 
            +
            from torchvision.transforms.functional import to_tensor, to_pil_image
         | 
| 10 | 
            +
            from torch import Tensor
         | 
| 11 | 
            +
            from genstereo import GenStereo, AdaptiveFusionLayer
         | 
| 12 | 
            +
            import ssl
         | 
| 13 | 
            +
            from huggingface_hub import hf_hub_download
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            from extern.DAM2.depth_anything_v2.dpt import DepthAnythingV2
         | 
| 16 | 
            +
            ssl._create_default_https_context = ssl._create_unverified_context
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            IMAGE_SIZE = 512
         | 
| 19 | 
            +
            DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
         | 
| 20 | 
            +
            CHECKPOINT_NAME = 'genstereo'
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            def download_models():
         | 
| 23 | 
            +
                models = [
         | 
| 24 | 
            +
                    {
         | 
| 25 | 
            +
                        'repo': 'stabilityai/sd-vae-ft-mse',
         | 
| 26 | 
            +
                        'sub': None,
         | 
| 27 | 
            +
                        'dst': 'checkpoints/sd-vae-ft-mse',
         | 
| 28 | 
            +
                        'files': ['config.json', 'diffusion_pytorch_model.safetensors'],
         | 
| 29 | 
            +
                        'token': None
         | 
| 30 | 
            +
                    },
         | 
| 31 | 
            +
                    {
         | 
| 32 | 
            +
                        'repo': 'lambdalabs/sd-image-variations-diffusers',
         | 
| 33 | 
            +
                        'sub': 'image_encoder',
         | 
| 34 | 
            +
                        'dst': 'checkpoints',
         | 
| 35 | 
            +
                        'files': ['config.json', 'pytorch_model.bin'],
         | 
| 36 | 
            +
                        'token': None
         | 
| 37 | 
            +
                    },
         | 
| 38 | 
            +
                    {
         | 
| 39 | 
            +
                        'repo': 'FQiao/GenStereo',
         | 
| 40 | 
            +
                        'sub': None,
         | 
| 41 | 
            +
                        'dst': 'checkpoints/genstereo',
         | 
| 42 | 
            +
                        'files': ['config.json', 'denoising_unet.pth', 'fusion_layer.pth', 'pose_guider.pth', 'reference_unet.pth'],
         | 
| 43 | 
            +
                        'token': None
         | 
| 44 | 
            +
                    },
         | 
| 45 | 
            +
                    {
         | 
| 46 | 
            +
                        'repo': 'depth-anything/Depth-Anything-V2-Large',
         | 
| 47 | 
            +
                        'sub': None,
         | 
| 48 | 
            +
                        'dst': 'checkpoints',
         | 
| 49 | 
            +
                        'files': [f'depth_anything_v2_vitl.pth'],
         | 
| 50 | 
            +
                        'token': None
         | 
| 51 | 
            +
                    }
         | 
| 52 | 
            +
                ]
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                for model in models:
         | 
| 55 | 
            +
                    for file in model['files']:
         | 
| 56 | 
            +
                        hf_hub_download(
         | 
| 57 | 
            +
                            repo_id=model['repo'],
         | 
| 58 | 
            +
                            subfolder=model['sub'],
         | 
| 59 | 
            +
                            filename=file,
         | 
| 60 | 
            +
                            local_dir=model['dst'],
         | 
| 61 | 
            +
                            token=model['token']
         | 
| 62 | 
            +
                        )
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            # Setup.
         | 
| 65 | 
            +
            download_models()
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            # DepthAnythingV2
         | 
| 68 | 
            +
            if 'dam2' not in globals():
         | 
| 69 | 
            +
                model_configs = {
         | 
| 70 | 
            +
                    'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
         | 
| 71 | 
            +
                    'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
         | 
| 72 | 
            +
                    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
         | 
| 73 | 
            +
                }
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                encoder = 'vitl'
         | 
| 76 | 
            +
                encoder_size_map = {'vits': 'Small', 'vitb': 'Base', 'vitl': 'Large'}
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                if encoder not in encoder_size_map:
         | 
| 79 | 
            +
                    raise ValueError(f"Unsupported encoder: {encoder}. Supported: {list(encoder_size_map.keys())}")
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                dam2 = DepthAnythingV2(**model_configs[encoder])
         | 
| 82 | 
            +
                dam2_checkpoint = f'checkpoints/depth_anything_v2_{encoder}.pth'
         | 
| 83 | 
            +
                dam2.load_state_dict(torch.load(dam2_checkpoint, map_location='cpu'))
         | 
| 84 | 
            +
                dam2 = dam2.to(DEVICE).eval()
         | 
| 85 | 
            +
             | 
| 86 | 
            +
            # GenStereo
         | 
| 87 | 
            +
            if 'genstereo' not in globals():
         | 
| 88 | 
            +
                genwarp_cfg = dict(
         | 
| 89 | 
            +
                    pretrained_model_path='checkpoints',
         | 
| 90 | 
            +
                    checkpoint_name=CHECKPOINT_NAME,
         | 
| 91 | 
            +
                    half_precision_weights=True
         | 
| 92 | 
            +
                )
         | 
| 93 | 
            +
                genstereo = GenStereo(cfg=genwarp_cfg, device=DEVICE)
         | 
| 94 | 
            +
             | 
| 95 | 
            +
            # Adaptive Fusion
         | 
| 96 | 
            +
            if 'fusion_model' not in globals():
         | 
| 97 | 
            +
                fusion_model = AdaptiveFusionLayer()
         | 
| 98 | 
            +
                fusion_checkpoint = join('checkpoints', CHECKPOINT_NAME, 'fusion_layer.pth')
         | 
| 99 | 
            +
                fusion_model.load_state_dict(torch.load(fusion_checkpoint))
         | 
| 100 | 
            +
                fusion_model = fusion_model.to(DEVICE).eval()
         | 
| 101 | 
            +
             | 
| 102 | 
            +
            # Crop the image to the shorter side.
         | 
| 103 | 
            +
            def crop(img: Image) -> Image:
         | 
| 104 | 
            +
                W, H = img.size
         | 
| 105 | 
            +
                if W < H:
         | 
| 106 | 
            +
                    left, right = 0, W
         | 
| 107 | 
            +
                    top, bottom = np.ceil((H - W) / 2.), np.floor((H - W) / 2.) + W
         | 
| 108 | 
            +
                else:
         | 
| 109 | 
            +
                    left, right = np.ceil((W - H) / 2.), np.floor((W - H) / 2.) + H
         | 
| 110 | 
            +
                    top, bottom = 0, H
         | 
| 111 | 
            +
                return img.crop((left, top, right, bottom))
         | 
| 112 | 
            +
             | 
| 113 | 
            +
            # Gradio app
         | 
| 114 | 
            +
            with tempfile.TemporaryDirectory() as tmpdir:
         | 
| 115 | 
            +
                with gr.Blocks(
         | 
| 116 | 
            +
                    title='StereoGen Demo',
         | 
| 117 | 
            +
                    css='img {display: inline;}'
         | 
| 118 | 
            +
                ) as demo:
         | 
| 119 | 
            +
                    # Internal states.
         | 
| 120 | 
            +
                    src_image = gr.State()
         | 
| 121 | 
            +
                    src_depth = gr.State()
         | 
| 122 | 
            +
                    proj_mtx = gr.State()
         | 
| 123 | 
            +
                    src_view_mtx = gr.State()
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                    # Blocks.
         | 
| 126 | 
            +
                    gr.Markdown(
         | 
| 127 | 
            +
                        """
         | 
| 128 | 
            +
                        # StereoGen: Towards Open-World Generation of Stereo Images and Unsupervised Matching
         | 
| 129 | 
            +
                        [](https://qjizhi.github.io/genstereo)  
         | 
| 130 | 
            +
                        [](https://huggingface.co/spaces/FQiao/GenStereo)  
         | 
| 131 | 
            +
                        [](https://github.com/Qjizhi/GenStereo)  
         | 
| 132 | 
            +
                        [](https://huggingface.co/FQiao/GenStereo/tree/main)  
         | 
| 133 | 
            +
                        []()
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                        ## Introduction
         | 
| 136 | 
            +
                        This is an official demo for the paper "[Towards Open-World Generation of Stereo Images and Unsupervised Matching](https://qjizhi.github.io/genstereo)". Given an arbitrary reference image, GenStereo can generate the corresponding right-view image.
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                        ## How to Use
         | 
| 139 | 
            +
                        1. Upload a reference image to "Left Image"
         | 
| 140 | 
            +
                            - You can also select an image from "Examples"
         | 
| 141 | 
            +
                        3. Hit "Generate a right image" button and check the result
         | 
| 142 | 
            +
                        """
         | 
| 143 | 
            +
                    )
         | 
| 144 | 
            +
                    file = gr.File(label='Left', file_types=['image'])
         | 
| 145 | 
            +
                    examples = gr.Examples(
         | 
| 146 | 
            +
                        examples=['./assets/COCO_val2017_000000070229.jpg',
         | 
| 147 | 
            +
                                './assets/COCO_val2017_000000092839.jpg',
         | 
| 148 | 
            +
                                './assets/KITTI2015_000003_10.png',
         | 
| 149 | 
            +
                                './assets/KITTI2015_000147_10.png'],
         | 
| 150 | 
            +
                        inputs=file
         | 
| 151 | 
            +
                    )
         | 
| 152 | 
            +
                    with gr.Row():
         | 
| 153 | 
            +
                        image_widget = gr.Image(
         | 
| 154 | 
            +
                            label='Depth', type='filepath',
         | 
| 155 | 
            +
                            interactive=False
         | 
| 156 | 
            +
                        )
         | 
| 157 | 
            +
                        depth_widget = gr.Image(label='Estimated Depth', type='pil')
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                    # Add scale factor slider
         | 
| 160 | 
            +
                    scale_slider = gr.Slider(
         | 
| 161 | 
            +
                        label='Scale Factor',
         | 
| 162 | 
            +
                        minimum=1.0,
         | 
| 163 | 
            +
                        maximum=30.0,
         | 
| 164 | 
            +
                        value=15.0,
         | 
| 165 | 
            +
                        step=0.1,
         | 
| 166 | 
            +
                    )
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                    button = gr.Button('Generate a right image', size='lg', variant='primary')
         | 
| 169 | 
            +
                    with gr.Row():
         | 
| 170 | 
            +
                        warped_widget = gr.Image(
         | 
| 171 | 
            +
                            label='Warped Image', type='pil', interactive=False
         | 
| 172 | 
            +
                        )
         | 
| 173 | 
            +
                        gen_widget = gr.Image(
         | 
| 174 | 
            +
                            label='Generated Right', type='pil', interactive=False
         | 
| 175 | 
            +
                        )
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                    def normalize_disp(disp):
         | 
| 178 | 
            +
                        return (disp - disp.min()) / (disp.max() - disp.min())
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                    # Callbacks
         | 
| 181 | 
            +
                    def cb_mde(image_file: str):
         | 
| 182 | 
            +
                        if not image_file:
         | 
| 183 | 
            +
                            # Return None if no image is provided (e.g., when file is cleared).
         | 
| 184 | 
            +
                            return None, None, None, None
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                        image = crop(Image.open(image_file).convert('RGB'))  # Load image using PIL
         | 
| 187 | 
            +
                        image = image.resize((IMAGE_SIZE, IMAGE_SIZE))
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                        image_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                        depth_dam2 = dam2.infer_image(image_bgr)
         | 
| 192 | 
            +
                        depth = torch.tensor(depth_dam2).unsqueeze(0).unsqueeze(0).float().cuda()
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                        depth_image = cv2.applyColorMap((normalize_disp(depth_dam2) * 255).astype(np.uint8), cv2.COLORMAP_JET)
         | 
| 195 | 
            +
             | 
| 196 | 
            +
                        return image, depth_image, image, depth
         | 
| 197 | 
            +
             | 
| 198 | 
            +
             | 
| 199 | 
            +
                    def cb_generate(image, depth: Tensor, scale_factor):
         | 
| 200 | 
            +
                        norm_disp = normalize_disp(depth)
         | 
| 201 | 
            +
                        disp = norm_disp * scale_factor / 100 * IMAGE_SIZE
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                        renders = genstereo(
         | 
| 204 | 
            +
                            src_image=image,
         | 
| 205 | 
            +
                            src_disparity=disp,
         | 
| 206 | 
            +
                            ratio=None,
         | 
| 207 | 
            +
                        )
         | 
| 208 | 
            +
                        warped = (renders['warped'] + 1) / 2
         | 
| 209 | 
            +
                        
         | 
| 210 | 
            +
                        synthesized = renders['synthesized']
         | 
| 211 | 
            +
                        mask = renders['mask']
         | 
| 212 | 
            +
                        fusion_image = fusion_model(synthesized.float(), warped.float(), mask.float())
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                        warped_pil = to_pil_image(warped[0])
         | 
| 215 | 
            +
                        fusion_pil = to_pil_image(fusion_image[0])
         | 
| 216 | 
            +
             | 
| 217 | 
            +
                        return warped_pil, fusion_pil
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                    # Events
         | 
| 220 | 
            +
                    file.change(
         | 
| 221 | 
            +
                        fn=cb_mde,
         | 
| 222 | 
            +
                        inputs=file,
         | 
| 223 | 
            +
                        outputs=[image_widget, depth_widget, src_image, src_depth]
         | 
| 224 | 
            +
                    )
         | 
| 225 | 
            +
                    button.click(
         | 
| 226 | 
            +
                        fn=cb_generate,
         | 
| 227 | 
            +
                        inputs=[src_image, src_depth, scale_slider],
         | 
| 228 | 
            +
                        outputs=[warped_widget, gen_widget]
         | 
| 229 | 
            +
                    )
         | 
| 230 | 
            +
             | 
| 231 | 
            +
                demo.launch(share=True)
         | 
    	
        assets/COCO_val2017_000000070229.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        assets/COCO_val2017_000000092839.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        assets/KITTI2015_000003_10.png
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        assets/KITTI2015_000147_10.png
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/DA-2K.md
    ADDED
    
    | @@ -0,0 +1,51 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # DA-2K Evaluation Benchmark
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            ## Introduction
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            DA-2K is proposed in [Depth Anything V2](https://depth-anything-v2.github.io) to evaluate the relative depth estimation capability. It encompasses eight representative scenarios of `indoor`, `outdoor`, `non_real`, `transparent_reflective`, `adverse_style`, `aerial`, `underwater`, and `object`. It consists of 1K diverse high-quality images and 2K precise pair-wise relative depth annotations.
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            Please refer to our [paper](https://arxiv.org/abs/2406.09414) for details in constructing this benchmark.
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            ## Usage
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            Please first [download the benchmark](https://huggingface.co/datasets/depth-anything/DA-2K/tree/main).
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            All annotations are stored in `annotations.json`. The annotation file is a JSON object where each key is the path to an image file, and the value is a list of annotations associated with that image. Each annotation describes two points and identifies which point is closer to the camera. The structure is detailed below:
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            ```
         | 
| 19 | 
            +
            {
         | 
| 20 | 
            +
              "image_path": [
         | 
| 21 | 
            +
                {
         | 
| 22 | 
            +
                  "point1": [h1, w1], # (vertical position, horizontal position)
         | 
| 23 | 
            +
                  "point2": [h2, w2], # (vertical position, horizontal position)
         | 
| 24 | 
            +
                  "closer_point": "point1" # we always set "point1" as the closer one
         | 
| 25 | 
            +
                },
         | 
| 26 | 
            +
                ...
         | 
| 27 | 
            +
              ],
         | 
| 28 | 
            +
              ...
         | 
| 29 | 
            +
            }
         | 
| 30 | 
            +
            ```
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            To visualize the annotations:
         | 
| 33 | 
            +
            ```bash
         | 
| 34 | 
            +
            python visualize.py [--scene-type <type>]
         | 
| 35 | 
            +
            ```
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            **Options**
         | 
| 38 | 
            +
            - `--scene-type <type>` (optional): Specify the scene type (`indoor`, `outdoor`, `non_real`, `transparent_reflective`, `adverse_style`, `aerial`, `underwater`, and `object`). Skip this argument or set <type> as `""` to include all scene types.
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            ## Citation
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            If you find this benchmark useful, please consider citing:
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            ```bibtex
         | 
| 45 | 
            +
            @article{depth_anything_v2,
         | 
| 46 | 
            +
              title={Depth Anything V2},
         | 
| 47 | 
            +
              author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Zhao, Zhen and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang},
         | 
| 48 | 
            +
              journal={arXiv:2406.09414},
         | 
| 49 | 
            +
              year={2024}
         | 
| 50 | 
            +
            }
         | 
| 51 | 
            +
            ```
         | 
    	
        extern/DAM2/LICENSE
    ADDED
    
    | @@ -0,0 +1,201 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
                                             Apache License
         | 
| 2 | 
            +
                                       Version 2.0, January 2004
         | 
| 3 | 
            +
                                    http://www.apache.org/licenses/
         | 
| 4 | 
            +
             | 
| 5 | 
            +
               TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
         | 
| 6 | 
            +
             | 
| 7 | 
            +
               1. Definitions.
         | 
| 8 | 
            +
             | 
| 9 | 
            +
                  "License" shall mean the terms and conditions for use, reproduction,
         | 
| 10 | 
            +
                  and distribution as defined by Sections 1 through 9 of this document.
         | 
| 11 | 
            +
             | 
| 12 | 
            +
                  "Licensor" shall mean the copyright owner or entity authorized by
         | 
| 13 | 
            +
                  the copyright owner that is granting the License.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
                  "Legal Entity" shall mean the union of the acting entity and all
         | 
| 16 | 
            +
                  other entities that control, are controlled by, or are under common
         | 
| 17 | 
            +
                  control with that entity. For the purposes of this definition,
         | 
| 18 | 
            +
                  "control" means (i) the power, direct or indirect, to cause the
         | 
| 19 | 
            +
                  direction or management of such entity, whether by contract or
         | 
| 20 | 
            +
                  otherwise, or (ii) ownership of fifty percent (50%) or more of the
         | 
| 21 | 
            +
                  outstanding shares, or (iii) beneficial ownership of such entity.
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                  "You" (or "Your") shall mean an individual or Legal Entity
         | 
| 24 | 
            +
                  exercising permissions granted by this License.
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                  "Source" form shall mean the preferred form for making modifications,
         | 
| 27 | 
            +
                  including but not limited to software source code, documentation
         | 
| 28 | 
            +
                  source, and configuration files.
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                  "Object" form shall mean any form resulting from mechanical
         | 
| 31 | 
            +
                  transformation or translation of a Source form, including but
         | 
| 32 | 
            +
                  not limited to compiled object code, generated documentation,
         | 
| 33 | 
            +
                  and conversions to other media types.
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                  "Work" shall mean the work of authorship, whether in Source or
         | 
| 36 | 
            +
                  Object form, made available under the License, as indicated by a
         | 
| 37 | 
            +
                  copyright notice that is included in or attached to the work
         | 
| 38 | 
            +
                  (an example is provided in the Appendix below).
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                  "Derivative Works" shall mean any work, whether in Source or Object
         | 
| 41 | 
            +
                  form, that is based on (or derived from) the Work and for which the
         | 
| 42 | 
            +
                  editorial revisions, annotations, elaborations, or other modifications
         | 
| 43 | 
            +
                  represent, as a whole, an original work of authorship. For the purposes
         | 
| 44 | 
            +
                  of this License, Derivative Works shall not include works that remain
         | 
| 45 | 
            +
                  separable from, or merely link (or bind by name) to the interfaces of,
         | 
| 46 | 
            +
                  the Work and Derivative Works thereof.
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                  "Contribution" shall mean any work of authorship, including
         | 
| 49 | 
            +
                  the original version of the Work and any modifications or additions
         | 
| 50 | 
            +
                  to that Work or Derivative Works thereof, that is intentionally
         | 
| 51 | 
            +
                  submitted to Licensor for inclusion in the Work by the copyright owner
         | 
| 52 | 
            +
                  or by an individual or Legal Entity authorized to submit on behalf of
         | 
| 53 | 
            +
                  the copyright owner. For the purposes of this definition, "submitted"
         | 
| 54 | 
            +
                  means any form of electronic, verbal, or written communication sent
         | 
| 55 | 
            +
                  to the Licensor or its representatives, including but not limited to
         | 
| 56 | 
            +
                  communication on electronic mailing lists, source code control systems,
         | 
| 57 | 
            +
                  and issue tracking systems that are managed by, or on behalf of, the
         | 
| 58 | 
            +
                  Licensor for the purpose of discussing and improving the Work, but
         | 
| 59 | 
            +
                  excluding communication that is conspicuously marked or otherwise
         | 
| 60 | 
            +
                  designated in writing by the copyright owner as "Not a Contribution."
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                  "Contributor" shall mean Licensor and any individual or Legal Entity
         | 
| 63 | 
            +
                  on behalf of whom a Contribution has been received by Licensor and
         | 
| 64 | 
            +
                  subsequently incorporated within the Work.
         | 
| 65 | 
            +
             | 
| 66 | 
            +
               2. Grant of Copyright License. Subject to the terms and conditions of
         | 
| 67 | 
            +
                  this License, each Contributor hereby grants to You a perpetual,
         | 
| 68 | 
            +
                  worldwide, non-exclusive, no-charge, royalty-free, irrevocable
         | 
| 69 | 
            +
                  copyright license to reproduce, prepare Derivative Works of,
         | 
| 70 | 
            +
                  publicly display, publicly perform, sublicense, and distribute the
         | 
| 71 | 
            +
                  Work and such Derivative Works in Source or Object form.
         | 
| 72 | 
            +
             | 
| 73 | 
            +
               3. Grant of Patent License. Subject to the terms and conditions of
         | 
| 74 | 
            +
                  this License, each Contributor hereby grants to You a perpetual,
         | 
| 75 | 
            +
                  worldwide, non-exclusive, no-charge, royalty-free, irrevocable
         | 
| 76 | 
            +
                  (except as stated in this section) patent license to make, have made,
         | 
| 77 | 
            +
                  use, offer to sell, sell, import, and otherwise transfer the Work,
         | 
| 78 | 
            +
                  where such license applies only to those patent claims licensable
         | 
| 79 | 
            +
                  by such Contributor that are necessarily infringed by their
         | 
| 80 | 
            +
                  Contribution(s) alone or by combination of their Contribution(s)
         | 
| 81 | 
            +
                  with the Work to which such Contribution(s) was submitted. If You
         | 
| 82 | 
            +
                  institute patent litigation against any entity (including a
         | 
| 83 | 
            +
                  cross-claim or counterclaim in a lawsuit) alleging that the Work
         | 
| 84 | 
            +
                  or a Contribution incorporated within the Work constitutes direct
         | 
| 85 | 
            +
                  or contributory patent infringement, then any patent licenses
         | 
| 86 | 
            +
                  granted to You under this License for that Work shall terminate
         | 
| 87 | 
            +
                  as of the date such litigation is filed.
         | 
| 88 | 
            +
             | 
| 89 | 
            +
               4. Redistribution. You may reproduce and distribute copies of the
         | 
| 90 | 
            +
                  Work or Derivative Works thereof in any medium, with or without
         | 
| 91 | 
            +
                  modifications, and in Source or Object form, provided that You
         | 
| 92 | 
            +
                  meet the following conditions:
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                  (a) You must give any other recipients of the Work or
         | 
| 95 | 
            +
                      Derivative Works a copy of this License; and
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                  (b) You must cause any modified files to carry prominent notices
         | 
| 98 | 
            +
                      stating that You changed the files; and
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                  (c) You must retain, in the Source form of any Derivative Works
         | 
| 101 | 
            +
                      that You distribute, all copyright, patent, trademark, and
         | 
| 102 | 
            +
                      attribution notices from the Source form of the Work,
         | 
| 103 | 
            +
                      excluding those notices that do not pertain to any part of
         | 
| 104 | 
            +
                      the Derivative Works; and
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                  (d) If the Work includes a "NOTICE" text file as part of its
         | 
| 107 | 
            +
                      distribution, then any Derivative Works that You distribute must
         | 
| 108 | 
            +
                      include a readable copy of the attribution notices contained
         | 
| 109 | 
            +
                      within such NOTICE file, excluding those notices that do not
         | 
| 110 | 
            +
                      pertain to any part of the Derivative Works, in at least one
         | 
| 111 | 
            +
                      of the following places: within a NOTICE text file distributed
         | 
| 112 | 
            +
                      as part of the Derivative Works; within the Source form or
         | 
| 113 | 
            +
                      documentation, if provided along with the Derivative Works; or,
         | 
| 114 | 
            +
                      within a display generated by the Derivative Works, if and
         | 
| 115 | 
            +
                      wherever such third-party notices normally appear. The contents
         | 
| 116 | 
            +
                      of the NOTICE file are for informational purposes only and
         | 
| 117 | 
            +
                      do not modify the License. You may add Your own attribution
         | 
| 118 | 
            +
                      notices within Derivative Works that You distribute, alongside
         | 
| 119 | 
            +
                      or as an addendum to the NOTICE text from the Work, provided
         | 
| 120 | 
            +
                      that such additional attribution notices cannot be construed
         | 
| 121 | 
            +
                      as modifying the License.
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                  You may add Your own copyright statement to Your modifications and
         | 
| 124 | 
            +
                  may provide additional or different license terms and conditions
         | 
| 125 | 
            +
                  for use, reproduction, or distribution of Your modifications, or
         | 
| 126 | 
            +
                  for any such Derivative Works as a whole, provided Your use,
         | 
| 127 | 
            +
                  reproduction, and distribution of the Work otherwise complies with
         | 
| 128 | 
            +
                  the conditions stated in this License.
         | 
| 129 | 
            +
             | 
| 130 | 
            +
               5. Submission of Contributions. Unless You explicitly state otherwise,
         | 
| 131 | 
            +
                  any Contribution intentionally submitted for inclusion in the Work
         | 
| 132 | 
            +
                  by You to the Licensor shall be under the terms and conditions of
         | 
| 133 | 
            +
                  this License, without any additional terms or conditions.
         | 
| 134 | 
            +
                  Notwithstanding the above, nothing herein shall supersede or modify
         | 
| 135 | 
            +
                  the terms of any separate license agreement you may have executed
         | 
| 136 | 
            +
                  with Licensor regarding such Contributions.
         | 
| 137 | 
            +
             | 
| 138 | 
            +
               6. Trademarks. This License does not grant permission to use the trade
         | 
| 139 | 
            +
                  names, trademarks, service marks, or product names of the Licensor,
         | 
| 140 | 
            +
                  except as required for reasonable and customary use in describing the
         | 
| 141 | 
            +
                  origin of the Work and reproducing the content of the NOTICE file.
         | 
| 142 | 
            +
             | 
| 143 | 
            +
               7. Disclaimer of Warranty. Unless required by applicable law or
         | 
| 144 | 
            +
                  agreed to in writing, Licensor provides the Work (and each
         | 
| 145 | 
            +
                  Contributor provides its Contributions) on an "AS IS" BASIS,
         | 
| 146 | 
            +
                  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
         | 
| 147 | 
            +
                  implied, including, without limitation, any warranties or conditions
         | 
| 148 | 
            +
                  of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
         | 
| 149 | 
            +
                  PARTICULAR PURPOSE. You are solely responsible for determining the
         | 
| 150 | 
            +
                  appropriateness of using or redistributing the Work and assume any
         | 
| 151 | 
            +
                  risks associated with Your exercise of permissions under this License.
         | 
| 152 | 
            +
             | 
| 153 | 
            +
               8. Limitation of Liability. In no event and under no legal theory,
         | 
| 154 | 
            +
                  whether in tort (including negligence), contract, or otherwise,
         | 
| 155 | 
            +
                  unless required by applicable law (such as deliberate and grossly
         | 
| 156 | 
            +
                  negligent acts) or agreed to in writing, shall any Contributor be
         | 
| 157 | 
            +
                  liable to You for damages, including any direct, indirect, special,
         | 
| 158 | 
            +
                  incidental, or consequential damages of any character arising as a
         | 
| 159 | 
            +
                  result of this License or out of the use or inability to use the
         | 
| 160 | 
            +
                  Work (including but not limited to damages for loss of goodwill,
         | 
| 161 | 
            +
                  work stoppage, computer failure or malfunction, or any and all
         | 
| 162 | 
            +
                  other commercial damages or losses), even if such Contributor
         | 
| 163 | 
            +
                  has been advised of the possibility of such damages.
         | 
| 164 | 
            +
             | 
| 165 | 
            +
               9. Accepting Warranty or Additional Liability. While redistributing
         | 
| 166 | 
            +
                  the Work or Derivative Works thereof, You may choose to offer,
         | 
| 167 | 
            +
                  and charge a fee for, acceptance of support, warranty, indemnity,
         | 
| 168 | 
            +
                  or other liability obligations and/or rights consistent with this
         | 
| 169 | 
            +
                  License. However, in accepting such obligations, You may act only
         | 
| 170 | 
            +
                  on Your own behalf and on Your sole responsibility, not on behalf
         | 
| 171 | 
            +
                  of any other Contributor, and only if You agree to indemnify,
         | 
| 172 | 
            +
                  defend, and hold each Contributor harmless for any liability
         | 
| 173 | 
            +
                  incurred by, or claims asserted against, such Contributor by reason
         | 
| 174 | 
            +
                  of your accepting any such warranty or additional liability.
         | 
| 175 | 
            +
             | 
| 176 | 
            +
               END OF TERMS AND CONDITIONS
         | 
| 177 | 
            +
             | 
| 178 | 
            +
               APPENDIX: How to apply the Apache License to your work.
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                  To apply the Apache License to your work, attach the following
         | 
| 181 | 
            +
                  boilerplate notice, with the fields enclosed by brackets "[]"
         | 
| 182 | 
            +
                  replaced with your own identifying information. (Don't include
         | 
| 183 | 
            +
                  the brackets!)  The text should be enclosed in the appropriate
         | 
| 184 | 
            +
                  comment syntax for the file format. We also recommend that a
         | 
| 185 | 
            +
                  file or class name and description of purpose be included on the
         | 
| 186 | 
            +
                  same "printed page" as the copyright notice for easier
         | 
| 187 | 
            +
                  identification within third-party archives.
         | 
| 188 | 
            +
             | 
| 189 | 
            +
               Copyright [yyyy] [name of copyright owner]
         | 
| 190 | 
            +
             | 
| 191 | 
            +
               Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 192 | 
            +
               you may not use this file except in compliance with the License.
         | 
| 193 | 
            +
               You may obtain a copy of the License at
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                   http://www.apache.org/licenses/LICENSE-2.0
         | 
| 196 | 
            +
             | 
| 197 | 
            +
               Unless required by applicable law or agreed to in writing, software
         | 
| 198 | 
            +
               distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 199 | 
            +
               WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 200 | 
            +
               See the License for the specific language governing permissions and
         | 
| 201 | 
            +
               limitations under the License.
         | 
    	
        extern/DAM2/README.md
    ADDED
    
    | @@ -0,0 +1,201 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            <div align="center">
         | 
| 2 | 
            +
            <h1>Depth Anything V2</h1>
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            [**Lihe Yang**](https://liheyoung.github.io/)<sup>1</sup> · [**Bingyi Kang**](https://bingykang.github.io/)<sup>2†</sup> · [**Zilong Huang**](http://speedinghzl.github.io/)<sup>2</sup>
         | 
| 5 | 
            +
            <br>
         | 
| 6 | 
            +
            [**Zhen Zhao**](http://zhaozhen.me/) · [**Xiaogang Xu**](https://xiaogang00.github.io/) · [**Jiashi Feng**](https://sites.google.com/site/jshfeng/)<sup>2</sup> · [**Hengshuang Zhao**](https://hszhao.github.io/)<sup>1*</sup>
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            <sup>1</sup>HKU   <sup>2</sup>TikTok
         | 
| 9 | 
            +
            <br>
         | 
| 10 | 
            +
            †project lead *corresponding author
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            <a href="https://arxiv.org/abs/2406.09414"><img src='https://img.shields.io/badge/arXiv-Depth Anything V2-red' alt='Paper PDF'></a>
         | 
| 13 | 
            +
            <a href='https://depth-anything-v2.github.io'><img src='https://img.shields.io/badge/Project_Page-Depth Anything V2-green' alt='Project Page'></a>
         | 
| 14 | 
            +
            <a href='https://huggingface.co/spaces/depth-anything/Depth-Anything-V2'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Demo-blue'></a>
         | 
| 15 | 
            +
            <a href='https://huggingface.co/datasets/depth-anything/DA-2K'><img src='https://img.shields.io/badge/Benchmark-DA--2K-yellow' alt='Benchmark'></a>
         | 
| 16 | 
            +
            </div>
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            This work presents Depth Anything V2. It significantly outperforms [V1](https://github.com/LiheYoung/Depth-Anything) in fine-grained details and robustness. Compared with SD-based models, it enjoys faster inference speed, fewer parameters, and higher depth accuracy.
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            ## News
         | 
| 24 | 
            +
            - **2025-01-22:** [Video Depth Anything](https://videodepthanything.github.io) has been released. It generates consistent depth maps for super-long videos (e.g., over 5 minutes).
         | 
| 25 | 
            +
            - **2024-12-22:** [Prompt Depth Anything](https://promptda.github.io/) has been released. It supports 4K resolution metric depth estimation when low-res LiDAR is used to prompt the DA models.
         | 
| 26 | 
            +
            - **2024-07-06:** Depth Anything V2 is supported in [Transformers](https://github.com/huggingface/transformers/). See the [instructions](https://huggingface.co/docs/transformers/main/en/model_doc/depth_anything_v2) for convenient usage.
         | 
| 27 | 
            +
            - **2024-06-25:** Depth Anything is integrated into [Apple Core ML Models](https://developer.apple.com/machine-learning/models/). See the instructions ([V1](https://huggingface.co/apple/coreml-depth-anything-small), [V2](https://huggingface.co/apple/coreml-depth-anything-v2-small)) for usage.
         | 
| 28 | 
            +
            - **2024-06-22:** We release [smaller metric depth models](https://github.com/DepthAnything/Depth-Anything-V2/tree/main/metric_depth#pre-trained-models) based on Depth-Anything-V2-Small and Base.
         | 
| 29 | 
            +
            - **2024-06-20:** Our repository and project page are flagged by GitHub and removed from the public for 6 days. Sorry for the inconvenience.
         | 
| 30 | 
            +
            - **2024-06-14:** Paper, project page, code, models, demo, and benchmark are all released.
         | 
| 31 | 
            +
             | 
| 32 | 
            +
             | 
| 33 | 
            +
            ## Pre-trained Models
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            We provide **four models** of varying scales for robust relative depth estimation:
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            | Model | Params | Checkpoint |
         | 
| 38 | 
            +
            |:-|-:|:-:|
         | 
| 39 | 
            +
            | Depth-Anything-V2-Small | 24.8M | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Small/resolve/main/depth_anything_v2_vits.pth?download=true) |
         | 
| 40 | 
            +
            | Depth-Anything-V2-Base | 97.5M | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Base/resolve/main/depth_anything_v2_vitb.pth?download=true) |
         | 
| 41 | 
            +
            | Depth-Anything-V2-Large | 335.3M | [Download](https://huggingface.co/depth-anything/Depth-Anything-V2-Large/resolve/main/depth_anything_v2_vitl.pth?download=true) |
         | 
| 42 | 
            +
            | Depth-Anything-V2-Giant | 1.3B | Coming soon |
         | 
| 43 | 
            +
             | 
| 44 | 
            +
             | 
| 45 | 
            +
            ## Usage
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            ### Prepraration
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            ```bash
         | 
| 50 | 
            +
            git clone https://github.com/DepthAnything/Depth-Anything-V2
         | 
| 51 | 
            +
            cd Depth-Anything-V2
         | 
| 52 | 
            +
            pip install -r requirements.txt
         | 
| 53 | 
            +
            ```
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            Download the checkpoints listed [here](#pre-trained-models) and put them under the `checkpoints` directory.
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            ### Use our models
         | 
| 58 | 
            +
            ```python
         | 
| 59 | 
            +
            import cv2
         | 
| 60 | 
            +
            import torch
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            from depth_anything_v2.dpt import DepthAnythingV2
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
         | 
| 65 | 
            +
             | 
| 66 | 
            +
            model_configs = {
         | 
| 67 | 
            +
                'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
         | 
| 68 | 
            +
                'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
         | 
| 69 | 
            +
                'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
         | 
| 70 | 
            +
                'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
         | 
| 71 | 
            +
            }
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            encoder = 'vitl' # or 'vits', 'vitb', 'vitg'
         | 
| 74 | 
            +
             | 
| 75 | 
            +
            model = DepthAnythingV2(**model_configs[encoder])
         | 
| 76 | 
            +
            model.load_state_dict(torch.load(f'checkpoints/depth_anything_v2_{encoder}.pth', map_location='cpu'))
         | 
| 77 | 
            +
            model = model.to(DEVICE).eval()
         | 
| 78 | 
            +
             | 
| 79 | 
            +
            raw_img = cv2.imread('your/image/path')
         | 
| 80 | 
            +
            depth = model.infer_image(raw_img) # HxW raw depth map in numpy
         | 
| 81 | 
            +
            ```
         | 
| 82 | 
            +
             | 
| 83 | 
            +
            If you do not want to clone this repository, you can also load our models through [Transformers](https://github.com/huggingface/transformers/). Below is a simple code snippet. Please refer to the [official page](https://huggingface.co/docs/transformers/main/en/model_doc/depth_anything_v2) for more details.
         | 
| 84 | 
            +
             | 
| 85 | 
            +
            - Note 1: Make sure you can connect to Hugging Face and have installed the latest Transformers.
         | 
| 86 | 
            +
            - Note 2: Due to the [upsampling difference](https://github.com/huggingface/transformers/pull/31522#issuecomment-2184123463) between OpenCV (we used) and Pillow (HF used), predictions may differ slightly. So you are more recommended to use our models through the way introduced above.
         | 
| 87 | 
            +
            ```python
         | 
| 88 | 
            +
            from transformers import pipeline
         | 
| 89 | 
            +
            from PIL import Image
         | 
| 90 | 
            +
             | 
| 91 | 
            +
            pipe = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Small-hf")
         | 
| 92 | 
            +
            image = Image.open('your/image/path')
         | 
| 93 | 
            +
            depth = pipe(image)["depth"]
         | 
| 94 | 
            +
            ```
         | 
| 95 | 
            +
             | 
| 96 | 
            +
            ### Running script on *images*
         | 
| 97 | 
            +
             | 
| 98 | 
            +
            ```bash
         | 
| 99 | 
            +
            python run.py \
         | 
| 100 | 
            +
              --encoder <vits | vitb | vitl | vitg> \
         | 
| 101 | 
            +
              --img-path <path> --outdir <outdir> \
         | 
| 102 | 
            +
              [--input-size <size>] [--pred-only] [--grayscale]
         | 
| 103 | 
            +
            ```
         | 
| 104 | 
            +
            Options:
         | 
| 105 | 
            +
            - `--img-path`: You can either 1) point it to an image directory storing all interested images, 2) point it to a single image, or 3) point it to a text file storing all image paths.
         | 
| 106 | 
            +
            - `--input-size` (optional): By default, we use input size `518` for model inference. ***You can increase the size for even more fine-grained results.***
         | 
| 107 | 
            +
            - `--pred-only` (optional): Only save the predicted depth map, without raw image.
         | 
| 108 | 
            +
            - `--grayscale` (optional): Save the grayscale depth map, without applying color palette.
         | 
| 109 | 
            +
             | 
| 110 | 
            +
            For example:
         | 
| 111 | 
            +
            ```bash
         | 
| 112 | 
            +
            python run.py --encoder vitl --img-path assets/examples --outdir depth_vis
         | 
| 113 | 
            +
            ```
         | 
| 114 | 
            +
             | 
| 115 | 
            +
            ### Running script on *videos*
         | 
| 116 | 
            +
             | 
| 117 | 
            +
            ```bash
         | 
| 118 | 
            +
            python run_video.py \
         | 
| 119 | 
            +
              --encoder <vits | vitb | vitl | vitg> \
         | 
| 120 | 
            +
              --video-path assets/examples_video --outdir video_depth_vis \
         | 
| 121 | 
            +
              [--input-size <size>] [--pred-only] [--grayscale]
         | 
| 122 | 
            +
            ```
         | 
| 123 | 
            +
             | 
| 124 | 
            +
            ***Our larger model has better temporal consistency on videos.***
         | 
| 125 | 
            +
             | 
| 126 | 
            +
            ### Gradio demo
         | 
| 127 | 
            +
             | 
| 128 | 
            +
            To use our gradio demo locally:
         | 
| 129 | 
            +
             | 
| 130 | 
            +
            ```bash
         | 
| 131 | 
            +
            python app.py
         | 
| 132 | 
            +
            ```
         | 
| 133 | 
            +
             | 
| 134 | 
            +
            You can also try our [online demo](https://huggingface.co/spaces/Depth-Anything/Depth-Anything-V2).
         | 
| 135 | 
            +
             | 
| 136 | 
            +
            ***Note: Compared to V1, we have made a minor modification to the DINOv2-DPT architecture (originating from this [issue](https://github.com/LiheYoung/Depth-Anything/issues/81)).*** In V1, we *unintentionally* used features from the last four layers of DINOv2 for decoding. In V2, we use [intermediate features](https://github.com/DepthAnything/Depth-Anything-V2/blob/2cbc36a8ce2cec41d38ee51153f112e87c8e42d8/depth_anything_v2/dpt.py#L164-L169) instead. Although this modification did not improve details or accuracy, we decided to follow this common practice.
         | 
| 137 | 
            +
             | 
| 138 | 
            +
             | 
| 139 | 
            +
            ## Fine-tuned to Metric Depth Estimation
         | 
| 140 | 
            +
             | 
| 141 | 
            +
            Please refer to [metric depth estimation](./metric_depth).
         | 
| 142 | 
            +
             | 
| 143 | 
            +
             | 
| 144 | 
            +
            ## DA-2K Evaluation Benchmark
         | 
| 145 | 
            +
             | 
| 146 | 
            +
            Please refer to [DA-2K benchmark](./DA-2K.md).
         | 
| 147 | 
            +
             | 
| 148 | 
            +
             | 
| 149 | 
            +
            ## Community Support
         | 
| 150 | 
            +
             | 
| 151 | 
            +
            **We sincerely appreciate all the community support for our Depth Anything series. Thank you a lot!**
         | 
| 152 | 
            +
             | 
| 153 | 
            +
            - Apple Core ML:
         | 
| 154 | 
            +
                - https://developer.apple.com/machine-learning/models
         | 
| 155 | 
            +
                - https://huggingface.co/apple/coreml-depth-anything-v2-small
         | 
| 156 | 
            +
                - https://huggingface.co/apple/coreml-depth-anything-small
         | 
| 157 | 
            +
            - Transformers:
         | 
| 158 | 
            +
                - https://huggingface.co/docs/transformers/main/en/model_doc/depth_anything_v2
         | 
| 159 | 
            +
                - https://huggingface.co/docs/transformers/main/en/model_doc/depth_anything
         | 
| 160 | 
            +
            - TensorRT:
         | 
| 161 | 
            +
                - https://github.com/spacewalk01/depth-anything-tensorrt
         | 
| 162 | 
            +
                - https://github.com/zhujiajian98/Depth-Anythingv2-TensorRT-python
         | 
| 163 | 
            +
            - ONNX: https://github.com/fabio-sim/Depth-Anything-ONNX
         | 
| 164 | 
            +
            - ComfyUI: https://github.com/kijai/ComfyUI-DepthAnythingV2
         | 
| 165 | 
            +
            - Transformers.js (real-time depth in web): https://huggingface.co/spaces/Xenova/webgpu-realtime-depth-estimation
         | 
| 166 | 
            +
            - Android:
         | 
| 167 | 
            +
              - https://github.com/shubham0204/Depth-Anything-Android
         | 
| 168 | 
            +
              - https://github.com/FeiGeChuanShu/ncnn-android-depth_anything
         | 
| 169 | 
            +
             | 
| 170 | 
            +
             | 
| 171 | 
            +
            ## Acknowledgement
         | 
| 172 | 
            +
             | 
| 173 | 
            +
            We are sincerely grateful to the awesome Hugging Face team ([@Pedro Cuenca](https://huggingface.co/pcuenq), [@Niels Rogge](https://huggingface.co/nielsr), [@Merve Noyan](https://huggingface.co/merve), [@Amy Roberts](https://huggingface.co/amyeroberts), et al.) for their huge efforts in supporting our models in Transformers and Apple Core ML.
         | 
| 174 | 
            +
             | 
| 175 | 
            +
            We also thank the [DINOv2](https://github.com/facebookresearch/dinov2) team for contributing such impressive models to our community.
         | 
| 176 | 
            +
             | 
| 177 | 
            +
             | 
| 178 | 
            +
            ## LICENSE
         | 
| 179 | 
            +
             | 
| 180 | 
            +
            Depth-Anything-V2-Small model is under the Apache-2.0 license. Depth-Anything-V2-Base/Large/Giant models are under the CC-BY-NC-4.0 license.
         | 
| 181 | 
            +
             | 
| 182 | 
            +
             | 
| 183 | 
            +
            ## Citation
         | 
| 184 | 
            +
             | 
| 185 | 
            +
            If you find this project useful, please consider citing:
         | 
| 186 | 
            +
             | 
| 187 | 
            +
            ```bibtex
         | 
| 188 | 
            +
            @article{depth_anything_v2,
         | 
| 189 | 
            +
              title={Depth Anything V2},
         | 
| 190 | 
            +
              author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Zhao, Zhen and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang},
         | 
| 191 | 
            +
              journal={arXiv:2406.09414},
         | 
| 192 | 
            +
              year={2024}
         | 
| 193 | 
            +
            }
         | 
| 194 | 
            +
             | 
| 195 | 
            +
            @inproceedings{depth_anything_v1,
         | 
| 196 | 
            +
              title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data}, 
         | 
| 197 | 
            +
              author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang},
         | 
| 198 | 
            +
              booktitle={CVPR},
         | 
| 199 | 
            +
              year={2024}
         | 
| 200 | 
            +
            }
         | 
| 201 | 
            +
            ```
         | 
    	
        extern/DAM2/app.py
    ADDED
    
    | @@ -0,0 +1,88 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import glob
         | 
| 2 | 
            +
            import gradio as gr
         | 
| 3 | 
            +
            import matplotlib
         | 
| 4 | 
            +
            import numpy as np
         | 
| 5 | 
            +
            from PIL import Image
         | 
| 6 | 
            +
            import torch
         | 
| 7 | 
            +
            import tempfile
         | 
| 8 | 
            +
            from gradio_imageslider import ImageSlider
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            from depth_anything_v2.dpt import DepthAnythingV2
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            css = """
         | 
| 13 | 
            +
            #img-display-container {
         | 
| 14 | 
            +
                max-height: 100vh;
         | 
| 15 | 
            +
            }
         | 
| 16 | 
            +
            #img-display-input {
         | 
| 17 | 
            +
                max-height: 80vh;
         | 
| 18 | 
            +
            }
         | 
| 19 | 
            +
            #img-display-output {
         | 
| 20 | 
            +
                max-height: 80vh;
         | 
| 21 | 
            +
            }
         | 
| 22 | 
            +
            #download {
         | 
| 23 | 
            +
                height: 62px;
         | 
| 24 | 
            +
            }
         | 
| 25 | 
            +
            """
         | 
| 26 | 
            +
            DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
         | 
| 27 | 
            +
            model_configs = {
         | 
| 28 | 
            +
                'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
         | 
| 29 | 
            +
                'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
         | 
| 30 | 
            +
                'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
         | 
| 31 | 
            +
                'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
         | 
| 32 | 
            +
            }
         | 
| 33 | 
            +
            encoder = 'vitl'
         | 
| 34 | 
            +
            model = DepthAnythingV2(**model_configs[encoder])
         | 
| 35 | 
            +
            state_dict = torch.load(f'checkpoints/depth_anything_v2_{encoder}.pth', map_location="cpu")
         | 
| 36 | 
            +
            model.load_state_dict(state_dict)
         | 
| 37 | 
            +
            model = model.to(DEVICE).eval()
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            title = "# Depth Anything V2"
         | 
| 40 | 
            +
            description = """Official demo for **Depth Anything V2**.
         | 
| 41 | 
            +
            Please refer to our [paper](https://arxiv.org/abs/2406.09414), [project page](https://depth-anything-v2.github.io), or [github](https://github.com/DepthAnything/Depth-Anything-V2) for more details."""
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            def predict_depth(image):
         | 
| 44 | 
            +
                return model.infer_image(image)
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            with gr.Blocks(css=css) as demo:
         | 
| 47 | 
            +
                gr.Markdown(title)
         | 
| 48 | 
            +
                gr.Markdown(description)
         | 
| 49 | 
            +
                gr.Markdown("### Depth Prediction demo")
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                with gr.Row():
         | 
| 52 | 
            +
                    input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
         | 
| 53 | 
            +
                    depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5)
         | 
| 54 | 
            +
                submit = gr.Button(value="Compute Depth")
         | 
| 55 | 
            +
                gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download",)
         | 
| 56 | 
            +
                raw_file = gr.File(label="16-bit raw output (can be considered as disparity)", elem_id="download",)
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                cmap = matplotlib.colormaps.get_cmap('Spectral_r')
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                def on_submit(image):
         | 
| 61 | 
            +
                    original_image = image.copy()
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                    h, w = image.shape[:2]
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                    depth = predict_depth(image[:, :, ::-1])
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                    raw_depth = Image.fromarray(depth.astype('uint16'))
         | 
| 68 | 
            +
                    tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
         | 
| 69 | 
            +
                    raw_depth.save(tmp_raw_depth.name)
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                    depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
         | 
| 72 | 
            +
                    depth = depth.astype(np.uint8)
         | 
| 73 | 
            +
                    colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                    gray_depth = Image.fromarray(depth)
         | 
| 76 | 
            +
                    tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
         | 
| 77 | 
            +
                    gray_depth.save(tmp_gray_depth.name)
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                    return [(original_image, colored_depth), tmp_gray_depth.name, tmp_raw_depth.name]
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file])
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                example_files = glob.glob('assets/examples/*')
         | 
| 84 | 
            +
                examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file], fn=on_submit)
         | 
| 85 | 
            +
             | 
| 86 | 
            +
             | 
| 87 | 
            +
            if __name__ == '__main__':
         | 
| 88 | 
            +
                demo.queue().launch()
         | 
    	
        extern/DAM2/assets/DA-2K.png
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples/demo01.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples/demo02.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples/demo03.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples/demo04.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples/demo05.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples/demo06.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples/demo07.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples/demo08.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples/demo09.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples/demo10.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples/demo11.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples/demo12.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples/demo13.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples/demo14.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples/demo15.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples/demo16.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples/demo17.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples/demo18.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples/demo19.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples/demo20.jpg
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/assets/examples_video/basketball.mp4
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:3049687fa169e8383c8f90086ea457bd786e72e85584ec8b511599ebcc6cbb27
         | 
| 3 | 
            +
            size 9714271
         | 
    	
        extern/DAM2/assets/examples_video/ferris_wheel.mp4
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:df452351def30bc0be2fef6be57e93745074954755a2b03f2b706045747a9697
         | 
| 3 | 
            +
            size 5334034
         | 
    	
        extern/DAM2/assets/teaser.png
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        extern/DAM2/depth_anything_v2/__pycache__/dinov2.cpython-310.pyc
    ADDED
    
    | Binary file (12.2 kB). View file | 
|  | 
    	
        extern/DAM2/depth_anything_v2/__pycache__/dpt.cpython-310.pyc
    ADDED
    
    | Binary file (6.01 kB). View file | 
|  | 
    	
        extern/DAM2/depth_anything_v2/dinov2.py
    ADDED
    
    | @@ -0,0 +1,415 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # This source code is licensed under the Apache License, Version 2.0
         | 
| 4 | 
            +
            # found in the LICENSE file in the root directory of this source tree.
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            # References:
         | 
| 7 | 
            +
            #   https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
         | 
| 8 | 
            +
            #   https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            from functools import partial
         | 
| 11 | 
            +
            import math
         | 
| 12 | 
            +
            import logging
         | 
| 13 | 
            +
            from typing import Sequence, Tuple, Union, Callable
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            import torch
         | 
| 16 | 
            +
            import torch.nn as nn
         | 
| 17 | 
            +
            import torch.utils.checkpoint
         | 
| 18 | 
            +
            from torch.nn.init import trunc_normal_
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            from .dinov2_layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            logger = logging.getLogger("dinov2")
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
         | 
| 27 | 
            +
                if not depth_first and include_root:
         | 
| 28 | 
            +
                    fn(module=module, name=name)
         | 
| 29 | 
            +
                for child_name, child_module in module.named_children():
         | 
| 30 | 
            +
                    child_name = ".".join((name, child_name)) if name else child_name
         | 
| 31 | 
            +
                    named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
         | 
| 32 | 
            +
                if depth_first and include_root:
         | 
| 33 | 
            +
                    fn(module=module, name=name)
         | 
| 34 | 
            +
                return module
         | 
| 35 | 
            +
             | 
| 36 | 
            +
             | 
| 37 | 
            +
            class BlockChunk(nn.ModuleList):
         | 
| 38 | 
            +
                def forward(self, x):
         | 
| 39 | 
            +
                    for b in self:
         | 
| 40 | 
            +
                        x = b(x)
         | 
| 41 | 
            +
                    return x
         | 
| 42 | 
            +
             | 
| 43 | 
            +
             | 
| 44 | 
            +
            class DinoVisionTransformer(nn.Module):
         | 
| 45 | 
            +
                def __init__(
         | 
| 46 | 
            +
                    self,
         | 
| 47 | 
            +
                    img_size=224,
         | 
| 48 | 
            +
                    patch_size=16,
         | 
| 49 | 
            +
                    in_chans=3,
         | 
| 50 | 
            +
                    embed_dim=768,
         | 
| 51 | 
            +
                    depth=12,
         | 
| 52 | 
            +
                    num_heads=12,
         | 
| 53 | 
            +
                    mlp_ratio=4.0,
         | 
| 54 | 
            +
                    qkv_bias=True,
         | 
| 55 | 
            +
                    ffn_bias=True,
         | 
| 56 | 
            +
                    proj_bias=True,
         | 
| 57 | 
            +
                    drop_path_rate=0.0,
         | 
| 58 | 
            +
                    drop_path_uniform=False,
         | 
| 59 | 
            +
                    init_values=None,  # for layerscale: None or 0 => no layerscale
         | 
| 60 | 
            +
                    embed_layer=PatchEmbed,
         | 
| 61 | 
            +
                    act_layer=nn.GELU,
         | 
| 62 | 
            +
                    block_fn=Block,
         | 
| 63 | 
            +
                    ffn_layer="mlp",
         | 
| 64 | 
            +
                    block_chunks=1,
         | 
| 65 | 
            +
                    num_register_tokens=0,
         | 
| 66 | 
            +
                    interpolate_antialias=False,
         | 
| 67 | 
            +
                    interpolate_offset=0.1,
         | 
| 68 | 
            +
                ):
         | 
| 69 | 
            +
                    """
         | 
| 70 | 
            +
                    Args:
         | 
| 71 | 
            +
                        img_size (int, tuple): input image size
         | 
| 72 | 
            +
                        patch_size (int, tuple): patch size
         | 
| 73 | 
            +
                        in_chans (int): number of input channels
         | 
| 74 | 
            +
                        embed_dim (int): embedding dimension
         | 
| 75 | 
            +
                        depth (int): depth of transformer
         | 
| 76 | 
            +
                        num_heads (int): number of attention heads
         | 
| 77 | 
            +
                        mlp_ratio (int): ratio of mlp hidden dim to embedding dim
         | 
| 78 | 
            +
                        qkv_bias (bool): enable bias for qkv if True
         | 
| 79 | 
            +
                        proj_bias (bool): enable bias for proj in attn if True
         | 
| 80 | 
            +
                        ffn_bias (bool): enable bias for ffn if True
         | 
| 81 | 
            +
                        drop_path_rate (float): stochastic depth rate
         | 
| 82 | 
            +
                        drop_path_uniform (bool): apply uniform drop rate across blocks
         | 
| 83 | 
            +
                        weight_init (str): weight init scheme
         | 
| 84 | 
            +
                        init_values (float): layer-scale init values
         | 
| 85 | 
            +
                        embed_layer (nn.Module): patch embedding layer
         | 
| 86 | 
            +
                        act_layer (nn.Module): MLP activation layer
         | 
| 87 | 
            +
                        block_fn (nn.Module): transformer block class
         | 
| 88 | 
            +
                        ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
         | 
| 89 | 
            +
                        block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
         | 
| 90 | 
            +
                        num_register_tokens: (int) number of extra cls tokens (so-called "registers")
         | 
| 91 | 
            +
                        interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings
         | 
| 92 | 
            +
                        interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
         | 
| 93 | 
            +
                    """
         | 
| 94 | 
            +
                    super().__init__()
         | 
| 95 | 
            +
                    norm_layer = partial(nn.LayerNorm, eps=1e-6)
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                    self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
         | 
| 98 | 
            +
                    self.num_tokens = 1
         | 
| 99 | 
            +
                    self.n_blocks = depth
         | 
| 100 | 
            +
                    self.num_heads = num_heads
         | 
| 101 | 
            +
                    self.patch_size = patch_size
         | 
| 102 | 
            +
                    self.num_register_tokens = num_register_tokens
         | 
| 103 | 
            +
                    self.interpolate_antialias = interpolate_antialias
         | 
| 104 | 
            +
                    self.interpolate_offset = interpolate_offset
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                    self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
         | 
| 107 | 
            +
                    num_patches = self.patch_embed.num_patches
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                    self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
         | 
| 110 | 
            +
                    self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
         | 
| 111 | 
            +
                    assert num_register_tokens >= 0
         | 
| 112 | 
            +
                    self.register_tokens = (
         | 
| 113 | 
            +
                        nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None
         | 
| 114 | 
            +
                    )
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                    if drop_path_uniform is True:
         | 
| 117 | 
            +
                        dpr = [drop_path_rate] * depth
         | 
| 118 | 
            +
                    else:
         | 
| 119 | 
            +
                        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                    if ffn_layer == "mlp":
         | 
| 122 | 
            +
                        logger.info("using MLP layer as FFN")
         | 
| 123 | 
            +
                        ffn_layer = Mlp
         | 
| 124 | 
            +
                    elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
         | 
| 125 | 
            +
                        logger.info("using SwiGLU layer as FFN")
         | 
| 126 | 
            +
                        ffn_layer = SwiGLUFFNFused
         | 
| 127 | 
            +
                    elif ffn_layer == "identity":
         | 
| 128 | 
            +
                        logger.info("using Identity layer as FFN")
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                        def f(*args, **kwargs):
         | 
| 131 | 
            +
                            return nn.Identity()
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                        ffn_layer = f
         | 
| 134 | 
            +
                    else:
         | 
| 135 | 
            +
                        raise NotImplementedError
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                    blocks_list = [
         | 
| 138 | 
            +
                        block_fn(
         | 
| 139 | 
            +
                            dim=embed_dim,
         | 
| 140 | 
            +
                            num_heads=num_heads,
         | 
| 141 | 
            +
                            mlp_ratio=mlp_ratio,
         | 
| 142 | 
            +
                            qkv_bias=qkv_bias,
         | 
| 143 | 
            +
                            proj_bias=proj_bias,
         | 
| 144 | 
            +
                            ffn_bias=ffn_bias,
         | 
| 145 | 
            +
                            drop_path=dpr[i],
         | 
| 146 | 
            +
                            norm_layer=norm_layer,
         | 
| 147 | 
            +
                            act_layer=act_layer,
         | 
| 148 | 
            +
                            ffn_layer=ffn_layer,
         | 
| 149 | 
            +
                            init_values=init_values,
         | 
| 150 | 
            +
                        )
         | 
| 151 | 
            +
                        for i in range(depth)
         | 
| 152 | 
            +
                    ]
         | 
| 153 | 
            +
                    if block_chunks > 0:
         | 
| 154 | 
            +
                        self.chunked_blocks = True
         | 
| 155 | 
            +
                        chunked_blocks = []
         | 
| 156 | 
            +
                        chunksize = depth // block_chunks
         | 
| 157 | 
            +
                        for i in range(0, depth, chunksize):
         | 
| 158 | 
            +
                            # this is to keep the block index consistent if we chunk the block list
         | 
| 159 | 
            +
                            chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
         | 
| 160 | 
            +
                        self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
         | 
| 161 | 
            +
                    else:
         | 
| 162 | 
            +
                        self.chunked_blocks = False
         | 
| 163 | 
            +
                        self.blocks = nn.ModuleList(blocks_list)
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                    self.norm = norm_layer(embed_dim)
         | 
| 166 | 
            +
                    self.head = nn.Identity()
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                    self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                    self.init_weights()
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                def init_weights(self):
         | 
| 173 | 
            +
                    trunc_normal_(self.pos_embed, std=0.02)
         | 
| 174 | 
            +
                    nn.init.normal_(self.cls_token, std=1e-6)
         | 
| 175 | 
            +
                    if self.register_tokens is not None:
         | 
| 176 | 
            +
                        nn.init.normal_(self.register_tokens, std=1e-6)
         | 
| 177 | 
            +
                    named_apply(init_weights_vit_timm, self)
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                def interpolate_pos_encoding(self, x, w, h):
         | 
| 180 | 
            +
                    previous_dtype = x.dtype
         | 
| 181 | 
            +
                    npatch = x.shape[1] - 1
         | 
| 182 | 
            +
                    N = self.pos_embed.shape[1] - 1
         | 
| 183 | 
            +
                    if npatch == N and w == h:
         | 
| 184 | 
            +
                        return self.pos_embed
         | 
| 185 | 
            +
                    pos_embed = self.pos_embed.float()
         | 
| 186 | 
            +
                    class_pos_embed = pos_embed[:, 0]
         | 
| 187 | 
            +
                    patch_pos_embed = pos_embed[:, 1:]
         | 
| 188 | 
            +
                    dim = x.shape[-1]
         | 
| 189 | 
            +
                    w0 = w // self.patch_size
         | 
| 190 | 
            +
                    h0 = h // self.patch_size
         | 
| 191 | 
            +
                    # we add a small number to avoid floating point error in the interpolation
         | 
| 192 | 
            +
                    # see discussion at https://github.com/facebookresearch/dino/issues/8
         | 
| 193 | 
            +
                    # DINOv2 with register modify the interpolate_offset from 0.1 to 0.0
         | 
| 194 | 
            +
                    w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset
         | 
| 195 | 
            +
                    # w0, h0 = w0 + 0.1, h0 + 0.1
         | 
| 196 | 
            +
                    
         | 
| 197 | 
            +
                    sqrt_N = math.sqrt(N)
         | 
| 198 | 
            +
                    sx, sy = float(w0) / sqrt_N, float(h0) / sqrt_N
         | 
| 199 | 
            +
                    patch_pos_embed = nn.functional.interpolate(
         | 
| 200 | 
            +
                        patch_pos_embed.reshape(1, int(sqrt_N), int(sqrt_N), dim).permute(0, 3, 1, 2),
         | 
| 201 | 
            +
                        scale_factor=(sx, sy),
         | 
| 202 | 
            +
                        # (int(w0), int(h0)), # to solve the upsampling shape issue
         | 
| 203 | 
            +
                        mode="bicubic",
         | 
| 204 | 
            +
                        antialias=self.interpolate_antialias
         | 
| 205 | 
            +
                    )
         | 
| 206 | 
            +
                    
         | 
| 207 | 
            +
                    assert int(w0) == patch_pos_embed.shape[-2]
         | 
| 208 | 
            +
                    assert int(h0) == patch_pos_embed.shape[-1]
         | 
| 209 | 
            +
                    patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
         | 
| 210 | 
            +
                    return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                def prepare_tokens_with_masks(self, x, masks=None):
         | 
| 213 | 
            +
                    B, nc, w, h = x.shape
         | 
| 214 | 
            +
                    x = self.patch_embed(x)
         | 
| 215 | 
            +
                    if masks is not None:
         | 
| 216 | 
            +
                        x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                    x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
         | 
| 219 | 
            +
                    x = x + self.interpolate_pos_encoding(x, w, h)
         | 
| 220 | 
            +
             | 
| 221 | 
            +
                    if self.register_tokens is not None:
         | 
| 222 | 
            +
                        x = torch.cat(
         | 
| 223 | 
            +
                            (
         | 
| 224 | 
            +
                                x[:, :1],
         | 
| 225 | 
            +
                                self.register_tokens.expand(x.shape[0], -1, -1),
         | 
| 226 | 
            +
                                x[:, 1:],
         | 
| 227 | 
            +
                            ),
         | 
| 228 | 
            +
                            dim=1,
         | 
| 229 | 
            +
                        )
         | 
| 230 | 
            +
             | 
| 231 | 
            +
                    return x
         | 
| 232 | 
            +
             | 
| 233 | 
            +
                def forward_features_list(self, x_list, masks_list):
         | 
| 234 | 
            +
                    x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
         | 
| 235 | 
            +
                    for blk in self.blocks:
         | 
| 236 | 
            +
                        x = blk(x)
         | 
| 237 | 
            +
             | 
| 238 | 
            +
                    all_x = x
         | 
| 239 | 
            +
                    output = []
         | 
| 240 | 
            +
                    for x, masks in zip(all_x, masks_list):
         | 
| 241 | 
            +
                        x_norm = self.norm(x)
         | 
| 242 | 
            +
                        output.append(
         | 
| 243 | 
            +
                            {
         | 
| 244 | 
            +
                                "x_norm_clstoken": x_norm[:, 0],
         | 
| 245 | 
            +
                                "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
         | 
| 246 | 
            +
                                "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
         | 
| 247 | 
            +
                                "x_prenorm": x,
         | 
| 248 | 
            +
                                "masks": masks,
         | 
| 249 | 
            +
                            }
         | 
| 250 | 
            +
                        )
         | 
| 251 | 
            +
                    return output
         | 
| 252 | 
            +
             | 
| 253 | 
            +
                def forward_features(self, x, masks=None):
         | 
| 254 | 
            +
                    if isinstance(x, list):
         | 
| 255 | 
            +
                        return self.forward_features_list(x, masks)
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                    x = self.prepare_tokens_with_masks(x, masks)
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                    for blk in self.blocks:
         | 
| 260 | 
            +
                        x = blk(x)
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                    x_norm = self.norm(x)
         | 
| 263 | 
            +
                    return {
         | 
| 264 | 
            +
                        "x_norm_clstoken": x_norm[:, 0],
         | 
| 265 | 
            +
                        "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
         | 
| 266 | 
            +
                        "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
         | 
| 267 | 
            +
                        "x_prenorm": x,
         | 
| 268 | 
            +
                        "masks": masks,
         | 
| 269 | 
            +
                    }
         | 
| 270 | 
            +
             | 
| 271 | 
            +
                def _get_intermediate_layers_not_chunked(self, x, n=1):
         | 
| 272 | 
            +
                    x = self.prepare_tokens_with_masks(x)
         | 
| 273 | 
            +
                    # If n is an int, take the n last blocks. If it's a list, take them
         | 
| 274 | 
            +
                    output, total_block_len = [], len(self.blocks)
         | 
| 275 | 
            +
                    blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
         | 
| 276 | 
            +
                    for i, blk in enumerate(self.blocks):
         | 
| 277 | 
            +
                        x = blk(x)
         | 
| 278 | 
            +
                        if i in blocks_to_take:
         | 
| 279 | 
            +
                            output.append(x)
         | 
| 280 | 
            +
                    assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
         | 
| 281 | 
            +
                    return output
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                def _get_intermediate_layers_chunked(self, x, n=1):
         | 
| 284 | 
            +
                    x = self.prepare_tokens_with_masks(x)
         | 
| 285 | 
            +
                    output, i, total_block_len = [], 0, len(self.blocks[-1])
         | 
| 286 | 
            +
                    # If n is an int, take the n last blocks. If it's a list, take them
         | 
| 287 | 
            +
                    blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
         | 
| 288 | 
            +
                    for block_chunk in self.blocks:
         | 
| 289 | 
            +
                        for blk in block_chunk[i:]:  # Passing the nn.Identity()
         | 
| 290 | 
            +
                            x = blk(x)
         | 
| 291 | 
            +
                            if i in blocks_to_take:
         | 
| 292 | 
            +
                                output.append(x)
         | 
| 293 | 
            +
                            i += 1
         | 
| 294 | 
            +
                    assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
         | 
| 295 | 
            +
                    return output
         | 
| 296 | 
            +
             | 
| 297 | 
            +
                def get_intermediate_layers(
         | 
| 298 | 
            +
                    self,
         | 
| 299 | 
            +
                    x: torch.Tensor,
         | 
| 300 | 
            +
                    n: Union[int, Sequence] = 1,  # Layers or n last layers to take
         | 
| 301 | 
            +
                    reshape: bool = False,
         | 
| 302 | 
            +
                    return_class_token: bool = False,
         | 
| 303 | 
            +
                    norm=True
         | 
| 304 | 
            +
                ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
         | 
| 305 | 
            +
                    if self.chunked_blocks:
         | 
| 306 | 
            +
                        outputs = self._get_intermediate_layers_chunked(x, n)
         | 
| 307 | 
            +
                    else:
         | 
| 308 | 
            +
                        outputs = self._get_intermediate_layers_not_chunked(x, n)
         | 
| 309 | 
            +
                    if norm:
         | 
| 310 | 
            +
                        outputs = [self.norm(out) for out in outputs]
         | 
| 311 | 
            +
                    class_tokens = [out[:, 0] for out in outputs]
         | 
| 312 | 
            +
                    outputs = [out[:, 1 + self.num_register_tokens:] for out in outputs]
         | 
| 313 | 
            +
                    if reshape:
         | 
| 314 | 
            +
                        B, _, w, h = x.shape
         | 
| 315 | 
            +
                        outputs = [
         | 
| 316 | 
            +
                            out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
         | 
| 317 | 
            +
                            for out in outputs
         | 
| 318 | 
            +
                        ]
         | 
| 319 | 
            +
                    if return_class_token:
         | 
| 320 | 
            +
                        return tuple(zip(outputs, class_tokens))
         | 
| 321 | 
            +
                    return tuple(outputs)
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                def forward(self, *args, is_training=False, **kwargs):
         | 
| 324 | 
            +
                    ret = self.forward_features(*args, **kwargs)
         | 
| 325 | 
            +
                    if is_training:
         | 
| 326 | 
            +
                        return ret
         | 
| 327 | 
            +
                    else:
         | 
| 328 | 
            +
                        return self.head(ret["x_norm_clstoken"])
         | 
| 329 | 
            +
             | 
| 330 | 
            +
             | 
| 331 | 
            +
            def init_weights_vit_timm(module: nn.Module, name: str = ""):
         | 
| 332 | 
            +
                """ViT weight initialization, original timm impl (for reproducibility)"""
         | 
| 333 | 
            +
                if isinstance(module, nn.Linear):
         | 
| 334 | 
            +
                    trunc_normal_(module.weight, std=0.02)
         | 
| 335 | 
            +
                    if module.bias is not None:
         | 
| 336 | 
            +
                        nn.init.zeros_(module.bias)
         | 
| 337 | 
            +
             | 
| 338 | 
            +
             | 
| 339 | 
            +
            def vit_small(patch_size=16, num_register_tokens=0, **kwargs):
         | 
| 340 | 
            +
                model = DinoVisionTransformer(
         | 
| 341 | 
            +
                    patch_size=patch_size,
         | 
| 342 | 
            +
                    embed_dim=384,
         | 
| 343 | 
            +
                    depth=12,
         | 
| 344 | 
            +
                    num_heads=6,
         | 
| 345 | 
            +
                    mlp_ratio=4,
         | 
| 346 | 
            +
                    block_fn=partial(Block, attn_class=MemEffAttention),
         | 
| 347 | 
            +
                    num_register_tokens=num_register_tokens,
         | 
| 348 | 
            +
                    **kwargs,
         | 
| 349 | 
            +
                )
         | 
| 350 | 
            +
                return model
         | 
| 351 | 
            +
             | 
| 352 | 
            +
             | 
| 353 | 
            +
            def vit_base(patch_size=16, num_register_tokens=0, **kwargs):
         | 
| 354 | 
            +
                model = DinoVisionTransformer(
         | 
| 355 | 
            +
                    patch_size=patch_size,
         | 
| 356 | 
            +
                    embed_dim=768,
         | 
| 357 | 
            +
                    depth=12,
         | 
| 358 | 
            +
                    num_heads=12,
         | 
| 359 | 
            +
                    mlp_ratio=4,
         | 
| 360 | 
            +
                    block_fn=partial(Block, attn_class=MemEffAttention),
         | 
| 361 | 
            +
                    num_register_tokens=num_register_tokens,
         | 
| 362 | 
            +
                    **kwargs,
         | 
| 363 | 
            +
                )
         | 
| 364 | 
            +
                return model
         | 
| 365 | 
            +
             | 
| 366 | 
            +
             | 
| 367 | 
            +
            def vit_large(patch_size=16, num_register_tokens=0, **kwargs):
         | 
| 368 | 
            +
                model = DinoVisionTransformer(
         | 
| 369 | 
            +
                    patch_size=patch_size,
         | 
| 370 | 
            +
                    embed_dim=1024,
         | 
| 371 | 
            +
                    depth=24,
         | 
| 372 | 
            +
                    num_heads=16,
         | 
| 373 | 
            +
                    mlp_ratio=4,
         | 
| 374 | 
            +
                    block_fn=partial(Block, attn_class=MemEffAttention),
         | 
| 375 | 
            +
                    num_register_tokens=num_register_tokens,
         | 
| 376 | 
            +
                    **kwargs,
         | 
| 377 | 
            +
                )
         | 
| 378 | 
            +
                return model
         | 
| 379 | 
            +
             | 
| 380 | 
            +
             | 
| 381 | 
            +
            def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs):
         | 
| 382 | 
            +
                """
         | 
| 383 | 
            +
                Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
         | 
| 384 | 
            +
                """
         | 
| 385 | 
            +
                model = DinoVisionTransformer(
         | 
| 386 | 
            +
                    patch_size=patch_size,
         | 
| 387 | 
            +
                    embed_dim=1536,
         | 
| 388 | 
            +
                    depth=40,
         | 
| 389 | 
            +
                    num_heads=24,
         | 
| 390 | 
            +
                    mlp_ratio=4,
         | 
| 391 | 
            +
                    block_fn=partial(Block, attn_class=MemEffAttention),
         | 
| 392 | 
            +
                    num_register_tokens=num_register_tokens,
         | 
| 393 | 
            +
                    **kwargs,
         | 
| 394 | 
            +
                )
         | 
| 395 | 
            +
                return model
         | 
| 396 | 
            +
             | 
| 397 | 
            +
             | 
| 398 | 
            +
            def DINOv2(model_name):
         | 
| 399 | 
            +
                model_zoo = {
         | 
| 400 | 
            +
                    "vits": vit_small, 
         | 
| 401 | 
            +
                    "vitb": vit_base, 
         | 
| 402 | 
            +
                    "vitl": vit_large, 
         | 
| 403 | 
            +
                    "vitg": vit_giant2
         | 
| 404 | 
            +
                }
         | 
| 405 | 
            +
                
         | 
| 406 | 
            +
                return model_zoo[model_name](
         | 
| 407 | 
            +
                    img_size=518,
         | 
| 408 | 
            +
                    patch_size=14,
         | 
| 409 | 
            +
                    init_values=1.0,
         | 
| 410 | 
            +
                    ffn_layer="mlp" if model_name != "vitg" else "swiglufused",
         | 
| 411 | 
            +
                    block_chunks=0,
         | 
| 412 | 
            +
                    num_register_tokens=0,
         | 
| 413 | 
            +
                    interpolate_antialias=False,
         | 
| 414 | 
            +
                    interpolate_offset=0.1
         | 
| 415 | 
            +
                )
         | 
    	
        extern/DAM2/depth_anything_v2/dinov2_layers/__init__.py
    ADDED
    
    | @@ -0,0 +1,11 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            +
            # All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This source code is licensed under the license found in the
         | 
| 5 | 
            +
            # LICENSE file in the root directory of this source tree.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            from .mlp import Mlp
         | 
| 8 | 
            +
            from .patch_embed import PatchEmbed
         | 
| 9 | 
            +
            from .swiglu_ffn import SwiGLUFFN, SwiGLUFFNFused
         | 
| 10 | 
            +
            from .block import NestedTensorBlock
         | 
| 11 | 
            +
            from .attention import MemEffAttention
         | 
    	
        extern/DAM2/depth_anything_v2/dinov2_layers/__pycache__/__init__.cpython-310.pyc
    ADDED
    
    | Binary file (437 Bytes). View file | 
|  | 
    	
        extern/DAM2/depth_anything_v2/dinov2_layers/__pycache__/attention.cpython-310.pyc
    ADDED
    
    | Binary file (2.41 kB). View file | 
|  | 
    	
        extern/DAM2/depth_anything_v2/dinov2_layers/__pycache__/block.cpython-310.pyc
    ADDED
    
    | Binary file (8.01 kB). View file | 
|  | 
    	
        extern/DAM2/depth_anything_v2/dinov2_layers/__pycache__/drop_path.cpython-310.pyc
    ADDED
    
    | Binary file (1.24 kB). View file | 
|  | 
    	
        extern/DAM2/depth_anything_v2/dinov2_layers/__pycache__/layer_scale.cpython-310.pyc
    ADDED
    
    | Binary file (1.04 kB). View file | 
|  | 
    	
        extern/DAM2/depth_anything_v2/dinov2_layers/__pycache__/mlp.cpython-310.pyc
    ADDED
    
    | Binary file (1.23 kB). View file | 
|  | 
    	
        extern/DAM2/depth_anything_v2/dinov2_layers/__pycache__/patch_embed.cpython-310.pyc
    ADDED
    
    | Binary file (2.68 kB). View file | 
|  | 
    	
        extern/DAM2/depth_anything_v2/dinov2_layers/__pycache__/swiglu_ffn.cpython-310.pyc
    ADDED
    
    | Binary file (2.03 kB). View file | 
|  | 
    	
        extern/DAM2/depth_anything_v2/dinov2_layers/attention.py
    ADDED
    
    | @@ -0,0 +1,83 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            +
            # All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This source code is licensed under the license found in the
         | 
| 5 | 
            +
            # LICENSE file in the root directory of this source tree.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # References:
         | 
| 8 | 
            +
            #   https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
         | 
| 9 | 
            +
            #   https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            import logging
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            from torch import Tensor
         | 
| 14 | 
            +
            from torch import nn
         | 
| 15 | 
            +
             | 
| 16 | 
            +
             | 
| 17 | 
            +
            logger = logging.getLogger("dinov2")
         | 
| 18 | 
            +
             | 
| 19 | 
            +
             | 
| 20 | 
            +
            try:
         | 
| 21 | 
            +
                from xformers.ops import memory_efficient_attention, unbind, fmha
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                XFORMERS_AVAILABLE = True
         | 
| 24 | 
            +
            except ImportError:
         | 
| 25 | 
            +
                logger.warning("xFormers not available")
         | 
| 26 | 
            +
                XFORMERS_AVAILABLE = False
         | 
| 27 | 
            +
             | 
| 28 | 
            +
             | 
| 29 | 
            +
            class Attention(nn.Module):
         | 
| 30 | 
            +
                def __init__(
         | 
| 31 | 
            +
                    self,
         | 
| 32 | 
            +
                    dim: int,
         | 
| 33 | 
            +
                    num_heads: int = 8,
         | 
| 34 | 
            +
                    qkv_bias: bool = False,
         | 
| 35 | 
            +
                    proj_bias: bool = True,
         | 
| 36 | 
            +
                    attn_drop: float = 0.0,
         | 
| 37 | 
            +
                    proj_drop: float = 0.0,
         | 
| 38 | 
            +
                ) -> None:
         | 
| 39 | 
            +
                    super().__init__()
         | 
| 40 | 
            +
                    self.num_heads = num_heads
         | 
| 41 | 
            +
                    head_dim = dim // num_heads
         | 
| 42 | 
            +
                    self.scale = head_dim**-0.5
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                    self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
         | 
| 45 | 
            +
                    self.attn_drop = nn.Dropout(attn_drop)
         | 
| 46 | 
            +
                    self.proj = nn.Linear(dim, dim, bias=proj_bias)
         | 
| 47 | 
            +
                    self.proj_drop = nn.Dropout(proj_drop)
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                def forward(self, x: Tensor) -> Tensor:
         | 
| 50 | 
            +
                    B, N, C = x.shape
         | 
| 51 | 
            +
                    qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                    q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
         | 
| 54 | 
            +
                    attn = q @ k.transpose(-2, -1)
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                    attn = attn.softmax(dim=-1)
         | 
| 57 | 
            +
                    attn = self.attn_drop(attn)
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                    x = (attn @ v).transpose(1, 2).reshape(B, N, C)
         | 
| 60 | 
            +
                    x = self.proj(x)
         | 
| 61 | 
            +
                    x = self.proj_drop(x)
         | 
| 62 | 
            +
                    return x
         | 
| 63 | 
            +
             | 
| 64 | 
            +
             | 
| 65 | 
            +
            class MemEffAttention(Attention):
         | 
| 66 | 
            +
                def forward(self, x: Tensor, attn_bias=None) -> Tensor:
         | 
| 67 | 
            +
                    if not XFORMERS_AVAILABLE:
         | 
| 68 | 
            +
                        assert attn_bias is None, "xFormers is required for nested tensors usage"
         | 
| 69 | 
            +
                        return super().forward(x)
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                    B, N, C = x.shape
         | 
| 72 | 
            +
                    qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                    q, k, v = unbind(qkv, 2)
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                    x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
         | 
| 77 | 
            +
                    x = x.reshape([B, N, C])
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                    x = self.proj(x)
         | 
| 80 | 
            +
                    x = self.proj_drop(x)
         | 
| 81 | 
            +
                    return x
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                    
         | 
    	
        extern/DAM2/depth_anything_v2/dinov2_layers/block.py
    ADDED
    
    | @@ -0,0 +1,252 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            +
            # All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This source code is licensed under the license found in the
         | 
| 5 | 
            +
            # LICENSE file in the root directory of this source tree.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # References:
         | 
| 8 | 
            +
            #   https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
         | 
| 9 | 
            +
            #   https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            import logging
         | 
| 12 | 
            +
            from typing import Callable, List, Any, Tuple, Dict
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            import torch
         | 
| 15 | 
            +
            from torch import nn, Tensor
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            from .attention import Attention, MemEffAttention
         | 
| 18 | 
            +
            from .drop_path import DropPath
         | 
| 19 | 
            +
            from .layer_scale import LayerScale
         | 
| 20 | 
            +
            from .mlp import Mlp
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            logger = logging.getLogger("dinov2")
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            try:
         | 
| 27 | 
            +
                from xformers.ops import fmha
         | 
| 28 | 
            +
                from xformers.ops import scaled_index_add, index_select_cat
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                XFORMERS_AVAILABLE = True
         | 
| 31 | 
            +
            except ImportError:
         | 
| 32 | 
            +
                logger.warning("xFormers not available")
         | 
| 33 | 
            +
                XFORMERS_AVAILABLE = False
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
            class Block(nn.Module):
         | 
| 37 | 
            +
                def __init__(
         | 
| 38 | 
            +
                    self,
         | 
| 39 | 
            +
                    dim: int,
         | 
| 40 | 
            +
                    num_heads: int,
         | 
| 41 | 
            +
                    mlp_ratio: float = 4.0,
         | 
| 42 | 
            +
                    qkv_bias: bool = False,
         | 
| 43 | 
            +
                    proj_bias: bool = True,
         | 
| 44 | 
            +
                    ffn_bias: bool = True,
         | 
| 45 | 
            +
                    drop: float = 0.0,
         | 
| 46 | 
            +
                    attn_drop: float = 0.0,
         | 
| 47 | 
            +
                    init_values=None,
         | 
| 48 | 
            +
                    drop_path: float = 0.0,
         | 
| 49 | 
            +
                    act_layer: Callable[..., nn.Module] = nn.GELU,
         | 
| 50 | 
            +
                    norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
         | 
| 51 | 
            +
                    attn_class: Callable[..., nn.Module] = Attention,
         | 
| 52 | 
            +
                    ffn_layer: Callable[..., nn.Module] = Mlp,
         | 
| 53 | 
            +
                ) -> None:
         | 
| 54 | 
            +
                    super().__init__()
         | 
| 55 | 
            +
                    # print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
         | 
| 56 | 
            +
                    self.norm1 = norm_layer(dim)
         | 
| 57 | 
            +
                    self.attn = attn_class(
         | 
| 58 | 
            +
                        dim,
         | 
| 59 | 
            +
                        num_heads=num_heads,
         | 
| 60 | 
            +
                        qkv_bias=qkv_bias,
         | 
| 61 | 
            +
                        proj_bias=proj_bias,
         | 
| 62 | 
            +
                        attn_drop=attn_drop,
         | 
| 63 | 
            +
                        proj_drop=drop,
         | 
| 64 | 
            +
                    )
         | 
| 65 | 
            +
                    self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
         | 
| 66 | 
            +
                    self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                    self.norm2 = norm_layer(dim)
         | 
| 69 | 
            +
                    mlp_hidden_dim = int(dim * mlp_ratio)
         | 
| 70 | 
            +
                    self.mlp = ffn_layer(
         | 
| 71 | 
            +
                        in_features=dim,
         | 
| 72 | 
            +
                        hidden_features=mlp_hidden_dim,
         | 
| 73 | 
            +
                        act_layer=act_layer,
         | 
| 74 | 
            +
                        drop=drop,
         | 
| 75 | 
            +
                        bias=ffn_bias,
         | 
| 76 | 
            +
                    )
         | 
| 77 | 
            +
                    self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
         | 
| 78 | 
            +
                    self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                    self.sample_drop_ratio = drop_path
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                def forward(self, x: Tensor) -> Tensor:
         | 
| 83 | 
            +
                    def attn_residual_func(x: Tensor) -> Tensor:
         | 
| 84 | 
            +
                        return self.ls1(self.attn(self.norm1(x)))
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                    def ffn_residual_func(x: Tensor) -> Tensor:
         | 
| 87 | 
            +
                        return self.ls2(self.mlp(self.norm2(x)))
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                    if self.training and self.sample_drop_ratio > 0.1:
         | 
| 90 | 
            +
                        # the overhead is compensated only for a drop path rate larger than 0.1
         | 
| 91 | 
            +
                        x = drop_add_residual_stochastic_depth(
         | 
| 92 | 
            +
                            x,
         | 
| 93 | 
            +
                            residual_func=attn_residual_func,
         | 
| 94 | 
            +
                            sample_drop_ratio=self.sample_drop_ratio,
         | 
| 95 | 
            +
                        )
         | 
| 96 | 
            +
                        x = drop_add_residual_stochastic_depth(
         | 
| 97 | 
            +
                            x,
         | 
| 98 | 
            +
                            residual_func=ffn_residual_func,
         | 
| 99 | 
            +
                            sample_drop_ratio=self.sample_drop_ratio,
         | 
| 100 | 
            +
                        )
         | 
| 101 | 
            +
                    elif self.training and self.sample_drop_ratio > 0.0:
         | 
| 102 | 
            +
                        x = x + self.drop_path1(attn_residual_func(x))
         | 
| 103 | 
            +
                        x = x + self.drop_path1(ffn_residual_func(x))  # FIXME: drop_path2
         | 
| 104 | 
            +
                    else:
         | 
| 105 | 
            +
                        x = x + attn_residual_func(x)
         | 
| 106 | 
            +
                        x = x + ffn_residual_func(x)
         | 
| 107 | 
            +
                    return x
         | 
| 108 | 
            +
             | 
| 109 | 
            +
             | 
| 110 | 
            +
            def drop_add_residual_stochastic_depth(
         | 
| 111 | 
            +
                x: Tensor,
         | 
| 112 | 
            +
                residual_func: Callable[[Tensor], Tensor],
         | 
| 113 | 
            +
                sample_drop_ratio: float = 0.0,
         | 
| 114 | 
            +
            ) -> Tensor:
         | 
| 115 | 
            +
                # 1) extract subset using permutation
         | 
| 116 | 
            +
                b, n, d = x.shape
         | 
| 117 | 
            +
                sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
         | 
| 118 | 
            +
                brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
         | 
| 119 | 
            +
                x_subset = x[brange]
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                # 2) apply residual_func to get residual
         | 
| 122 | 
            +
                residual = residual_func(x_subset)
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                x_flat = x.flatten(1)
         | 
| 125 | 
            +
                residual = residual.flatten(1)
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                residual_scale_factor = b / sample_subset_size
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                # 3) add the residual
         | 
| 130 | 
            +
                x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
         | 
| 131 | 
            +
                return x_plus_residual.view_as(x)
         | 
| 132 | 
            +
             | 
| 133 | 
            +
             | 
| 134 | 
            +
            def get_branges_scales(x, sample_drop_ratio=0.0):
         | 
| 135 | 
            +
                b, n, d = x.shape
         | 
| 136 | 
            +
                sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
         | 
| 137 | 
            +
                brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
         | 
| 138 | 
            +
                residual_scale_factor = b / sample_subset_size
         | 
| 139 | 
            +
                return brange, residual_scale_factor
         | 
| 140 | 
            +
             | 
| 141 | 
            +
             | 
| 142 | 
            +
            def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
         | 
| 143 | 
            +
                if scaling_vector is None:
         | 
| 144 | 
            +
                    x_flat = x.flatten(1)
         | 
| 145 | 
            +
                    residual = residual.flatten(1)
         | 
| 146 | 
            +
                    x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
         | 
| 147 | 
            +
                else:
         | 
| 148 | 
            +
                    x_plus_residual = scaled_index_add(
         | 
| 149 | 
            +
                        x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
         | 
| 150 | 
            +
                    )
         | 
| 151 | 
            +
                return x_plus_residual
         | 
| 152 | 
            +
             | 
| 153 | 
            +
             | 
| 154 | 
            +
            attn_bias_cache: Dict[Tuple, Any] = {}
         | 
| 155 | 
            +
             | 
| 156 | 
            +
             | 
| 157 | 
            +
            def get_attn_bias_and_cat(x_list, branges=None):
         | 
| 158 | 
            +
                """
         | 
| 159 | 
            +
                this will perform the index select, cat the tensors, and provide the attn_bias from cache
         | 
| 160 | 
            +
                """
         | 
| 161 | 
            +
                batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
         | 
| 162 | 
            +
                all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
         | 
| 163 | 
            +
                if all_shapes not in attn_bias_cache.keys():
         | 
| 164 | 
            +
                    seqlens = []
         | 
| 165 | 
            +
                    for b, x in zip(batch_sizes, x_list):
         | 
| 166 | 
            +
                        for _ in range(b):
         | 
| 167 | 
            +
                            seqlens.append(x.shape[1])
         | 
| 168 | 
            +
                    attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
         | 
| 169 | 
            +
                    attn_bias._batch_sizes = batch_sizes
         | 
| 170 | 
            +
                    attn_bias_cache[all_shapes] = attn_bias
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                if branges is not None:
         | 
| 173 | 
            +
                    cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
         | 
| 174 | 
            +
                else:
         | 
| 175 | 
            +
                    tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
         | 
| 176 | 
            +
                    cat_tensors = torch.cat(tensors_bs1, dim=1)
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                return attn_bias_cache[all_shapes], cat_tensors
         | 
| 179 | 
            +
             | 
| 180 | 
            +
             | 
| 181 | 
            +
            def drop_add_residual_stochastic_depth_list(
         | 
| 182 | 
            +
                x_list: List[Tensor],
         | 
| 183 | 
            +
                residual_func: Callable[[Tensor, Any], Tensor],
         | 
| 184 | 
            +
                sample_drop_ratio: float = 0.0,
         | 
| 185 | 
            +
                scaling_vector=None,
         | 
| 186 | 
            +
            ) -> Tensor:
         | 
| 187 | 
            +
                # 1) generate random set of indices for dropping samples in the batch
         | 
| 188 | 
            +
                branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
         | 
| 189 | 
            +
                branges = [s[0] for s in branges_scales]
         | 
| 190 | 
            +
                residual_scale_factors = [s[1] for s in branges_scales]
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                # 2) get attention bias and index+concat the tensors
         | 
| 193 | 
            +
                attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                # 3) apply residual_func to get residual, and split the result
         | 
| 196 | 
            +
                residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias))  # type: ignore
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                outputs = []
         | 
| 199 | 
            +
                for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
         | 
| 200 | 
            +
                    outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
         | 
| 201 | 
            +
                return outputs
         | 
| 202 | 
            +
             | 
| 203 | 
            +
             | 
| 204 | 
            +
            class NestedTensorBlock(Block):
         | 
| 205 | 
            +
                def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]:
         | 
| 206 | 
            +
                    """
         | 
| 207 | 
            +
                    x_list contains a list of tensors to nest together and run
         | 
| 208 | 
            +
                    """
         | 
| 209 | 
            +
                    assert isinstance(self.attn, MemEffAttention)
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                    if self.training and self.sample_drop_ratio > 0.0:
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                        def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
         | 
| 214 | 
            +
                            return self.attn(self.norm1(x), attn_bias=attn_bias)
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                        def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
         | 
| 217 | 
            +
                            return self.mlp(self.norm2(x))
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                        x_list = drop_add_residual_stochastic_depth_list(
         | 
| 220 | 
            +
                            x_list,
         | 
| 221 | 
            +
                            residual_func=attn_residual_func,
         | 
| 222 | 
            +
                            sample_drop_ratio=self.sample_drop_ratio,
         | 
| 223 | 
            +
                            scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None,
         | 
| 224 | 
            +
                        )
         | 
| 225 | 
            +
                        x_list = drop_add_residual_stochastic_depth_list(
         | 
| 226 | 
            +
                            x_list,
         | 
| 227 | 
            +
                            residual_func=ffn_residual_func,
         | 
| 228 | 
            +
                            sample_drop_ratio=self.sample_drop_ratio,
         | 
| 229 | 
            +
                            scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None,
         | 
| 230 | 
            +
                        )
         | 
| 231 | 
            +
                        return x_list
         | 
| 232 | 
            +
                    else:
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                        def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
         | 
| 235 | 
            +
                            return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                        def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
         | 
| 238 | 
            +
                            return self.ls2(self.mlp(self.norm2(x)))
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                        attn_bias, x = get_attn_bias_and_cat(x_list)
         | 
| 241 | 
            +
                        x = x + attn_residual_func(x, attn_bias=attn_bias)
         | 
| 242 | 
            +
                        x = x + ffn_residual_func(x)
         | 
| 243 | 
            +
                        return attn_bias.split(x)
         | 
| 244 | 
            +
             | 
| 245 | 
            +
                def forward(self, x_or_x_list):
         | 
| 246 | 
            +
                    if isinstance(x_or_x_list, Tensor):
         | 
| 247 | 
            +
                        return super().forward(x_or_x_list)
         | 
| 248 | 
            +
                    elif isinstance(x_or_x_list, list):
         | 
| 249 | 
            +
                        assert XFORMERS_AVAILABLE, "Please install xFormers for nested tensors usage"
         | 
| 250 | 
            +
                        return self.forward_nested(x_or_x_list)
         | 
| 251 | 
            +
                    else:
         | 
| 252 | 
            +
                        raise AssertionError
         | 
    	
        extern/DAM2/depth_anything_v2/dinov2_layers/drop_path.py
    ADDED
    
    | @@ -0,0 +1,35 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            +
            # All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This source code is licensed under the license found in the
         | 
| 5 | 
            +
            # LICENSE file in the root directory of this source tree.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # References:
         | 
| 8 | 
            +
            #   https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
         | 
| 9 | 
            +
            #   https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/drop.py
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            from torch import nn
         | 
| 13 | 
            +
             | 
| 14 | 
            +
             | 
| 15 | 
            +
            def drop_path(x, drop_prob: float = 0.0, training: bool = False):
         | 
| 16 | 
            +
                if drop_prob == 0.0 or not training:
         | 
| 17 | 
            +
                    return x
         | 
| 18 | 
            +
                keep_prob = 1 - drop_prob
         | 
| 19 | 
            +
                shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
         | 
| 20 | 
            +
                random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
         | 
| 21 | 
            +
                if keep_prob > 0.0:
         | 
| 22 | 
            +
                    random_tensor.div_(keep_prob)
         | 
| 23 | 
            +
                output = x * random_tensor
         | 
| 24 | 
            +
                return output
         | 
| 25 | 
            +
             | 
| 26 | 
            +
             | 
| 27 | 
            +
            class DropPath(nn.Module):
         | 
| 28 | 
            +
                """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                def __init__(self, drop_prob=None):
         | 
| 31 | 
            +
                    super(DropPath, self).__init__()
         | 
| 32 | 
            +
                    self.drop_prob = drop_prob
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                def forward(self, x):
         | 
| 35 | 
            +
                    return drop_path(x, self.drop_prob, self.training)
         | 
    	
        extern/DAM2/depth_anything_v2/dinov2_layers/layer_scale.py
    ADDED
    
    | @@ -0,0 +1,28 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            +
            # All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This source code is licensed under the license found in the
         | 
| 5 | 
            +
            # LICENSE file in the root directory of this source tree.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Modified from: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L103-L110
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from typing import Union
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            import torch
         | 
| 12 | 
            +
            from torch import Tensor
         | 
| 13 | 
            +
            from torch import nn
         | 
| 14 | 
            +
             | 
| 15 | 
            +
             | 
| 16 | 
            +
            class LayerScale(nn.Module):
         | 
| 17 | 
            +
                def __init__(
         | 
| 18 | 
            +
                    self,
         | 
| 19 | 
            +
                    dim: int,
         | 
| 20 | 
            +
                    init_values: Union[float, Tensor] = 1e-5,
         | 
| 21 | 
            +
                    inplace: bool = False,
         | 
| 22 | 
            +
                ) -> None:
         | 
| 23 | 
            +
                    super().__init__()
         | 
| 24 | 
            +
                    self.inplace = inplace
         | 
| 25 | 
            +
                    self.gamma = nn.Parameter(init_values * torch.ones(dim))
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                def forward(self, x: Tensor) -> Tensor:
         | 
| 28 | 
            +
                    return x.mul_(self.gamma) if self.inplace else x * self.gamma
         | 
 
			
