Create app.py file
Browse files
app.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional, Union
|
| 2 |
+
from vllm.engine.llm_engine import LLMEngine
|
| 3 |
+
from vllm.engine.arg_utils import EngineArgs
|
| 4 |
+
from vllm.usage.usage_lib import UsageContext
|
| 5 |
+
from vllm.utils import Counter
|
| 6 |
+
from vllm.outputs import RequestOutput
|
| 7 |
+
from vllm import SamplingParams
|
| 8 |
+
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
|
| 9 |
+
import gradio as gr
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class StreamingLLM:
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
model: str,
|
| 16 |
+
dtype: str = "auto",
|
| 17 |
+
quantization: Optional[str] = None,
|
| 18 |
+
**kwargs,
|
| 19 |
+
) -> None:
|
| 20 |
+
engine_args = EngineArgs(model=model, quantization=quantization, dtype=dtype, enforce_eager=True)
|
| 21 |
+
self.llm_engine = LLMEngine.from_engine_args(engine_args, usage_context=UsageContext.LLM_CLASS)
|
| 22 |
+
self.request_counter = Counter()
|
| 23 |
+
|
| 24 |
+
def generate(
|
| 25 |
+
self,
|
| 26 |
+
prompt: Optional[str] = None,
|
| 27 |
+
sampling_params: Optional[SamplingParams] = None
|
| 28 |
+
) -> List[RequestOutput]:
|
| 29 |
+
|
| 30 |
+
request_id = str(next(self.request_counter))
|
| 31 |
+
self.llm_engine.add_request(request_id, prompt, sampling_params)
|
| 32 |
+
|
| 33 |
+
while self.llm_engine.has_unfinished_requests():
|
| 34 |
+
step_outputs = self.llm_engine.step()
|
| 35 |
+
for output in step_outputs:
|
| 36 |
+
yield output
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class UI:
|
| 40 |
+
def __init__(
|
| 41 |
+
self,
|
| 42 |
+
llm: StreamingLLM,
|
| 43 |
+
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
|
| 44 |
+
sampling_params: Optional[SamplingParams] = None,
|
| 45 |
+
) -> None:
|
| 46 |
+
self.llm = llm
|
| 47 |
+
self.tokenizer = tokenizer
|
| 48 |
+
self.sampling_params = sampling_params
|
| 49 |
+
|
| 50 |
+
def _generate(self, message, history):
|
| 51 |
+
history_chat_format = []
|
| 52 |
+
for human, assistant in history:
|
| 53 |
+
history_chat_format.append({"role": "user", "content": human })
|
| 54 |
+
history_chat_format.append({"role": "assistant", "content": assistant})
|
| 55 |
+
history_chat_format.append({"role": "user", "content": message})
|
| 56 |
+
|
| 57 |
+
prompt = self.tokenizer.apply_chat_template(history_chat_format, tokenize=False)
|
| 58 |
+
|
| 59 |
+
for chunk in self.llm.generate(prompt, self.sampling_params):
|
| 60 |
+
yield chunk.outputs[0].text
|
| 61 |
+
|
| 62 |
+
def launch(self):
|
| 63 |
+
gr.ChatInterface(self._generate).launch()
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
if __name__ == "__main__":
|
| 67 |
+
llm = StreamingLLM(model="casperhansen/llama-3-70b-instruct-awq", quantization="AWQ", dtype="float16")
|
| 68 |
+
tokenizer = llm.llm_engine.tokenizer.tokenizer
|
| 69 |
+
sampling_params = SamplingParams(temperature=0.6,
|
| 70 |
+
top_p=0.9,
|
| 71 |
+
max_tokens=4096,
|
| 72 |
+
stop_token_ids=[tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")]
|
| 73 |
+
)
|
| 74 |
+
ui = UI(llm, tokenizer, sampling_params)
|
| 75 |
+
ui.launch()
|