trocr-qualcomm / app.py
tanu-gitam
TROCR Qualcomm Deploy
a451050
from transformers import VisionEncoderDecoderModel, TrOCRProcessor
import torch
from PIL import Image
import gradio as gr
# Load processor and model
model = VisionEncoderDecoderModel.from_pretrained("qualcomm/TrOCR")
processor = TrOCRProcessor.from_pretrained("qualcomm/TrOCR")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
def recognize_text(image):
if image is None:
return "Please upload an image."
pixel_values = processor(images=image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
# Gradio interface
demo = gr.Interface(
fn=recognize_text,
inputs=gr.Image(type="pil"),
outputs="text",
title="πŸ“ TrOCR Printed Text Recognition",
description="Upload a printed text image and get the recognized text using Microsoft's TrOCR (Base Model).",
allow_flagging="never"
)
if __name__ == "__main__":
demo.launch()