Upload 10 files
Browse files- .gitattributes +6 -0
- LICENSE.txt +201 -0
- README_space.md +189 -0
- app.py +1668 -0
- assets/compare-hist-kde-tips.png +3 -0
- assets/compare-scatter-flights.png +3 -0
- assets/matplotlib-iris-sepal-length-hist.png +3 -0
- assets/matplotlib-iris-sepal-length-line.png +3 -0
- assets/seaborn-tips-total-bill-hist-sex.png +3 -0
- assets/seaborn-tips-total-bill-vs-tip-scatter.png +3 -0
- requirements.txt +6 -3
.gitattributes
CHANGED
|
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
assets/compare-hist-kde-tips.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
assets/compare-scatter-flights.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
assets/matplotlib-iris-sepal-length-hist.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
assets/matplotlib-iris-sepal-length-line.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
assets/seaborn-tips-total-bill-hist-sex.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
assets/seaborn-tips-total-bill-vs-tip-scatter.png filter=lfs diff=lfs merge=lfs -text
|
LICENSE.txt
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Apache License
|
| 2 |
+
Version 2.0, January 2004
|
| 3 |
+
http://www.apache.org/licenses/
|
| 4 |
+
|
| 5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
| 6 |
+
|
| 7 |
+
1. Definitions.
|
| 8 |
+
|
| 9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
| 10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
| 11 |
+
|
| 12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
| 13 |
+
the copyright owner that is granting the License.
|
| 14 |
+
|
| 15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
| 16 |
+
other entities that control, are controlled by, or are under common
|
| 17 |
+
control with that entity. For the purposes of this definition,
|
| 18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
| 19 |
+
direction or management of such entity, whether by contract or
|
| 20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
| 21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
| 22 |
+
|
| 23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
| 24 |
+
exercising permissions granted by this License.
|
| 25 |
+
|
| 26 |
+
"Source" form shall mean the preferred form for making modifications,
|
| 27 |
+
including but not limited to software source code, documentation
|
| 28 |
+
source, and configuration files.
|
| 29 |
+
|
| 30 |
+
"Object" form shall mean any form resulting from mechanical
|
| 31 |
+
transformation or translation of a Source form, including but
|
| 32 |
+
not limited to compiled object code, generated documentation,
|
| 33 |
+
and conversions to other media types.
|
| 34 |
+
|
| 35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
| 36 |
+
Object form, made available under the License, as indicated by a
|
| 37 |
+
copyright notice that is included in or attached to the work
|
| 38 |
+
(an example is provided in the Appendix below).
|
| 39 |
+
|
| 40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
| 41 |
+
form, that is based on (or derived from) the Work and for which the
|
| 42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
| 43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
| 44 |
+
of this License, Derivative Works shall not include works that remain
|
| 45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
| 46 |
+
the Work and Derivative Works thereof.
|
| 47 |
+
|
| 48 |
+
"Contribution" shall mean any work of authorship, including
|
| 49 |
+
the original version of the Work and any modifications or additions
|
| 50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
| 51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
| 52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
| 53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
| 54 |
+
means any form of electronic, verbal, or written communication sent
|
| 55 |
+
to the Licensor or its representatives, including but not limited to
|
| 56 |
+
communication on electronic mailing lists, source code control systems,
|
| 57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
| 58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
| 59 |
+
excluding communication that is conspicuously marked or otherwise
|
| 60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
| 61 |
+
|
| 62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
| 63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
| 64 |
+
subsequently incorporated within the Work.
|
| 65 |
+
|
| 66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
| 67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
| 70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
| 71 |
+
Work and such Derivative Works in Source or Object form.
|
| 72 |
+
|
| 73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
| 74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 76 |
+
(except as stated in this section) patent license to make, have made,
|
| 77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
| 78 |
+
where such license applies only to those patent claims licensable
|
| 79 |
+
by such Contributor that are necessarily infringed by their
|
| 80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
| 81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
| 82 |
+
institute patent litigation against any entity (including a
|
| 83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
| 84 |
+
or a Contribution incorporated within the Work constitutes direct
|
| 85 |
+
or contributory patent infringement, then any patent licenses
|
| 86 |
+
granted to You under this License for that Work shall terminate
|
| 87 |
+
as of the date such litigation is filed.
|
| 88 |
+
|
| 89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
| 90 |
+
Work or Derivative Works thereof in any medium, with or without
|
| 91 |
+
modifications, and in Source or Object form, provided that You
|
| 92 |
+
meet the following conditions:
|
| 93 |
+
|
| 94 |
+
(a) You must give any other recipients of the Work or
|
| 95 |
+
Derivative Works a copy of this License; and
|
| 96 |
+
|
| 97 |
+
(b) You must cause any modified files to carry prominent notices
|
| 98 |
+
stating that You changed the files; and
|
| 99 |
+
|
| 100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
| 101 |
+
that You distribute, all copyright, patent, trademark, and
|
| 102 |
+
attribution notices from the Source form of the Work,
|
| 103 |
+
excluding those notices that do not pertain to any part of
|
| 104 |
+
the Derivative Works; and
|
| 105 |
+
|
| 106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
| 107 |
+
distribution, then any Derivative Works that You distribute must
|
| 108 |
+
include a readable copy of the attribution notices contained
|
| 109 |
+
within such NOTICE file, excluding those notices that do not
|
| 110 |
+
pertain to any part of the Derivative Works, in at least one
|
| 111 |
+
of the following places: within a NOTICE text file distributed
|
| 112 |
+
as part of the Derivative Works; within the Source form or
|
| 113 |
+
documentation, if provided along with the Derivative Works; or,
|
| 114 |
+
within a display generated by the Derivative Works, if and
|
| 115 |
+
wherever such third-party notices normally appear. The contents
|
| 116 |
+
of the NOTICE file are for informational purposes only and
|
| 117 |
+
do not modify the License. You may add Your own attribution
|
| 118 |
+
notices within Derivative Works that You distribute, alongside
|
| 119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
| 120 |
+
that such additional attribution notices cannot be construed
|
| 121 |
+
as modifying the License.
|
| 122 |
+
|
| 123 |
+
You may add Your own copyright statement to Your modifications and
|
| 124 |
+
may provide additional or different license terms and conditions
|
| 125 |
+
for use, reproduction, or distribution of Your modifications, or
|
| 126 |
+
for any such Derivative Works as a whole, provided Your use,
|
| 127 |
+
reproduction, and distribution of the Work otherwise complies with
|
| 128 |
+
the conditions stated in this License.
|
| 129 |
+
|
| 130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
| 131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
| 132 |
+
by You to the Licensor shall be under the terms and conditions of
|
| 133 |
+
this License, without any additional terms or conditions.
|
| 134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
| 135 |
+
the terms of any separate license agreement you may have executed
|
| 136 |
+
with Licensor regarding such Contributions.
|
| 137 |
+
|
| 138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
| 139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
| 140 |
+
except as required for reasonable and customary use in describing the
|
| 141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
| 142 |
+
|
| 143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
| 144 |
+
agreed to in writing, Licensor provides the Work (and each
|
| 145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
| 146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
| 147 |
+
implied, including, without limitation, any warranties or conditions
|
| 148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
| 149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
| 150 |
+
appropriateness of using or redistributing the Work and assume any
|
| 151 |
+
risks associated with Your exercise of permissions under this License.
|
| 152 |
+
|
| 153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
| 154 |
+
whether in tort (including negligence), contract, or otherwise,
|
| 155 |
+
unless required by applicable law (such as deliberate and grossly
|
| 156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
| 157 |
+
liable to You for damages, including any direct, indirect, special,
|
| 158 |
+
incidental, or consequential damages of any character arising as a
|
| 159 |
+
result of this License or out of the use or inability to use the
|
| 160 |
+
Work (including but not limited to damages for loss of goodwill,
|
| 161 |
+
work stoppage, computer failure or malfunction, or any and all
|
| 162 |
+
other commercial damages or losses), even if such Contributor
|
| 163 |
+
has been advised of the possibility of such damages.
|
| 164 |
+
|
| 165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
| 166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
| 167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
| 168 |
+
or other liability obligations and/or rights consistent with this
|
| 169 |
+
License. However, in accepting such obligations, You may act only
|
| 170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
| 171 |
+
of any other Contributor, and only if You agree to indemnify,
|
| 172 |
+
defend, and hold each Contributor harmless for any liability
|
| 173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
| 174 |
+
of your accepting any such warranty or additional liability.
|
| 175 |
+
|
| 176 |
+
END OF TERMS AND CONDITIONS
|
| 177 |
+
|
| 178 |
+
APPENDIX: How to apply the Apache License to your work.
|
| 179 |
+
|
| 180 |
+
To apply the Apache License to your work, attach the following
|
| 181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
| 182 |
+
replaced with your own identifying information. (Don't include
|
| 183 |
+
the brackets!) The text should be enclosed in the appropriate
|
| 184 |
+
comment syntax for the file format. We also recommend that a
|
| 185 |
+
file or class name and description of purpose be included on the
|
| 186 |
+
same "printed page" as the copyright notice for easier
|
| 187 |
+
identification within third-party archives.
|
| 188 |
+
|
| 189 |
+
Copyright [yyyy] [name of copyright owner]
|
| 190 |
+
|
| 191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 192 |
+
you may not use this file except in compliance with the License.
|
| 193 |
+
You may obtain a copy of the License at
|
| 194 |
+
|
| 195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 196 |
+
|
| 197 |
+
Unless required by applicable law or agreed to in writing, software
|
| 198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 200 |
+
See the License for the specific language governing permissions and
|
| 201 |
+
limitations under the License.
|
README_space.md
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 📊 Seaborn & Matplotlib Visual Lab
|
| 2 |
+
|
| 3 |
+
Interactive Streamlit app for exploring **Seaborn** and **Matplotlib** side by side — from quick EDA plots to code snippets you can reuse in your notebooks.
|
| 4 |
+
|
| 5 |
+
This Space runs directly in the browser.
|
| 6 |
+
No file uploads are required: the app uses **Seaborn’s built-in demo datasets** for safe, fast experimentation.
|
| 7 |
+
|
| 8 |
+
[](https://streamlit.io/)<br>
|
| 9 |
+
[](https://seaborn.pydata.org/)<br>
|
| 10 |
+
[](https://matplotlib.org/)<br>
|
| 11 |
+
[](https://github.com/tarekmasryo)
|
| 12 |
+
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
## 📌 What this app does
|
| 16 |
+
|
| 17 |
+
The Seaborn & Matplotlib Visual Lab lets you:
|
| 18 |
+
|
| 19 |
+
- Load classic **Seaborn demo datasets** (Tips, Penguins, Flights, Iris, Diamonds, Titanic, Car Crashes)
|
| 20 |
+
- Build **Seaborn plots** interactively (distribution, relationships, categories, heatmaps, pairplots)
|
| 21 |
+
- Recreate the same ideas using **Matplotlib** with more low-level control
|
| 22 |
+
- Compare **Seaborn vs Matplotlib** for the *same* pattern in one screen
|
| 23 |
+
- Save plots into a **gallery** and download them as PNG or a ZIP archive
|
| 24 |
+
|
| 25 |
+
Use it as a small **visual lab for plots**: learn, tweak, copy the code, and move it into your own projects.
|
| 26 |
+
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
## 📸 Dashboard Preview
|
| 30 |
+
|
| 31 |
+
### 1️⃣ Seaborn — Distribution Builder (Tips)
|
| 32 |
+
|
| 33 |
+
<p align="center">
|
| 34 |
+
<img src="assets/seaborn-tips-total-bill-hist-sex.png" alt="Seaborn histogram of total_bill by sex from the tips dataset" />
|
| 35 |
+
</p>
|
| 36 |
+
|
| 37 |
+
---
|
| 38 |
+
|
| 39 |
+
### 2️⃣ Seaborn — Relationship Builder (Tips)
|
| 40 |
+
|
| 41 |
+
<p align="center">
|
| 42 |
+
<img src="assets/seaborn-tips-total-bill-vs-tip-scatter.png" alt="Seaborn scatter plot of total_bill vs tip from the tips dataset" />
|
| 43 |
+
</p>
|
| 44 |
+
|
| 45 |
+
---
|
| 46 |
+
|
| 47 |
+
### 3️⃣ Matplotlib — Histogram (Iris)
|
| 48 |
+
|
| 49 |
+
<p align="center">
|
| 50 |
+
<img src="assets/matplotlib-iris-sepal-length-hist.png" alt="Matplotlib histogram of sepal length from the iris dataset" />
|
| 51 |
+
</p>
|
| 52 |
+
|
| 53 |
+
---
|
| 54 |
+
|
| 55 |
+
### 4️⃣ Matplotlib — Line Plot (Iris)
|
| 56 |
+
|
| 57 |
+
<p align="center">
|
| 58 |
+
<img src="assets/matplotlib-iris-sepal-length-line.png" alt="Matplotlib line plot of sepal length over index from the iris dataset" />
|
| 59 |
+
</p>
|
| 60 |
+
|
| 61 |
+
---
|
| 62 |
+
|
| 63 |
+
### 5️⃣ Compare — Histogram + KDE (Tips)
|
| 64 |
+
|
| 65 |
+
<p align="center">
|
| 66 |
+
<img src="assets/compare-hist-kde-tips.png" alt="Compare tab showing Seaborn vs Matplotlib histogram + KDE for the tips dataset" />
|
| 67 |
+
</p>
|
| 68 |
+
|
| 69 |
+
---
|
| 70 |
+
|
| 71 |
+
### 6️⃣ Compare — Scatter (Flights)
|
| 72 |
+
|
| 73 |
+
<p align="center">
|
| 74 |
+
<img src="assets/compare-scatter-flights.png" alt="Compare tab showing Seaborn vs Matplotlib scatter plot for the flights dataset" />
|
| 75 |
+
</p>
|
| 76 |
+
|
| 77 |
+
---
|
| 78 |
+
|
| 79 |
+
## 🧭 How to use this Space
|
| 80 |
+
|
| 81 |
+
The app is organised into five main tabs:
|
| 82 |
+
|
| 83 |
+
### 1. Overview
|
| 84 |
+
|
| 85 |
+
High-level view of the active dataset:
|
| 86 |
+
|
| 87 |
+
- Sample preview (top rows)
|
| 88 |
+
- Column types and missingness summary
|
| 89 |
+
- Quick numeric distribution
|
| 90 |
+
- Small correlation heatmap for a subset of numeric features
|
| 91 |
+
|
| 92 |
+
Good starting point for any dataset before plotting.
|
| 93 |
+
|
| 94 |
+
---
|
| 95 |
+
|
| 96 |
+
### 2. Seaborn builder
|
| 97 |
+
|
| 98 |
+
UI-driven Seaborn plots:
|
| 99 |
+
|
| 100 |
+
- Plot families: **Distribution, Relationship, Category, Matrix / Heatmap, Multi-variable**
|
| 101 |
+
- Controls for:
|
| 102 |
+
- Numeric / categorical column selection
|
| 103 |
+
- Bins, KDE, ECDF, log-scale
|
| 104 |
+
- Hue grouping and top-K categories
|
| 105 |
+
- Auto-updated **Python code snippet** that you can copy into a notebook
|
| 106 |
+
|
| 107 |
+
---
|
| 108 |
+
|
| 109 |
+
### 3. Matplotlib builder
|
| 110 |
+
|
| 111 |
+
Low-level Matplotlib plotting:
|
| 112 |
+
|
| 113 |
+
- Plot types: **Line, Scatter, Bar, Histogram, Box, Subplots overview**
|
| 114 |
+
- Controls for:
|
| 115 |
+
- Axes selection (X/Y)
|
| 116 |
+
- Markers, point size, transparency
|
| 117 |
+
- Horizontal vs vertical bars
|
| 118 |
+
- Density vs counts, optional KDE overlay in overview
|
| 119 |
+
|
| 120 |
+
The goal is to show how to translate visual ideas into **raw Matplotlib commands**.
|
| 121 |
+
|
| 122 |
+
---
|
| 123 |
+
|
| 124 |
+
### 4. Compare
|
| 125 |
+
|
| 126 |
+
Side-by-side comparison of Seaborn and Matplotlib for:
|
| 127 |
+
|
| 128 |
+
- **Distribution pattern:** histogram + KDE
|
| 129 |
+
- **Relationship pattern:** scatter plot
|
| 130 |
+
|
| 131 |
+
Useful for teaching how high-level Seaborn APIs map to Matplotlib primitives.
|
| 132 |
+
|
| 133 |
+
---
|
| 134 |
+
|
| 135 |
+
### 5. Gallery
|
| 136 |
+
|
| 137 |
+
A lightweight export hub:
|
| 138 |
+
|
| 139 |
+
- Save any Seaborn or Matplotlib plot into a session **gallery**
|
| 140 |
+
- Download individual PNGs
|
| 141 |
+
- Prepare and download a **ZIP** with all saved plots
|
| 142 |
+
|
| 143 |
+
---
|
| 144 |
+
|
| 145 |
+
## 📚 Data & Datasets
|
| 146 |
+
|
| 147 |
+
All data lives inside the Space and comes from **Seaborn’s built-in datasets**.
|
| 148 |
+
No uploads, no external APIs, and no personal data.
|
| 149 |
+
|
| 150 |
+
Available datasets:
|
| 151 |
+
|
| 152 |
+
- `tips`
|
| 153 |
+
- `penguins` (NaNs dropped)
|
| 154 |
+
- `flights`
|
| 155 |
+
- `iris`
|
| 156 |
+
- `diamonds` (1,000-row sample)
|
| 157 |
+
- `titanic`
|
| 158 |
+
- `car_crashes`
|
| 159 |
+
|
| 160 |
+
Switch between them from the sidebar and see the plots update instantly.
|
| 161 |
+
|
| 162 |
+
---
|
| 163 |
+
|
| 164 |
+
## 🧩 Tech Stack
|
| 165 |
+
|
| 166 |
+
- **Python**
|
| 167 |
+
- **Streamlit** — app framework
|
| 168 |
+
- **Seaborn** — high-level statistical plotting
|
| 169 |
+
- **Matplotlib** — core plotting engine
|
| 170 |
+
- **NumPy** & **pandas** — data handling
|
| 171 |
+
|
| 172 |
+
---
|
| 173 |
+
|
| 174 |
+
## 🖥 Run locally (optional)
|
| 175 |
+
|
| 176 |
+
If you want to run the same app outside Hugging Face Spaces:
|
| 177 |
+
|
| 178 |
+
```bash
|
| 179 |
+
git clone https://github.com/tarekmasryo/seaborn-matplotlib-visual-lab.git
|
| 180 |
+
cd seaborn-matplotlib-visual-lab
|
| 181 |
+
|
| 182 |
+
pip install -r requirements.txt
|
| 183 |
+
streamlit run app.py
|
| 184 |
+
|
| 185 |
+
```
|
| 186 |
+
|
| 187 |
+
---
|
| 188 |
+
|
| 189 |
+
Use this Space as a safe place to experiment with plots, learn the APIs, and copy production-ready snippets into your own notebooks and dashboards.
|
app.py
ADDED
|
@@ -0,0 +1,1668 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import warnings
|
| 2 |
+
import io
|
| 3 |
+
import zipfile
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
|
| 6 |
+
warnings.filterwarnings("ignore")
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import matplotlib.pyplot as plt
|
| 11 |
+
import seaborn as sns
|
| 12 |
+
import streamlit as st
|
| 13 |
+
from matplotlib.ticker import FuncFormatter
|
| 14 |
+
from scipy import stats
|
| 15 |
+
|
| 16 |
+
# ==================== PAGE CONFIG ====================
|
| 17 |
+
st.set_page_config(
|
| 18 |
+
page_title="Seaborn & Matplotlib Visual Lab",
|
| 19 |
+
page_icon="📊",
|
| 20 |
+
layout="wide",
|
| 21 |
+
initial_sidebar_state="expanded",
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
# ==================== GLOBAL STYLE ====================
|
| 25 |
+
st.markdown(
|
| 26 |
+
"""
|
| 27 |
+
<style>
|
| 28 |
+
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600;700;800&display=swap');
|
| 29 |
+
|
| 30 |
+
* {
|
| 31 |
+
font-family: 'Inter', sans-serif;
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
.stApp {
|
| 35 |
+
background: radial-gradient(circle at 0% 0%, #020617 0, #020617 45%, #020617 100%);
|
| 36 |
+
color: #e5e7eb;
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
.block-container {
|
| 40 |
+
padding-top: 1.4rem;
|
| 41 |
+
padding-bottom: 3rem;
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
.main-header {
|
| 45 |
+
font-size: 3.1rem;
|
| 46 |
+
font-weight: 800;
|
| 47 |
+
background: linear-gradient(135deg, #38bdf8 0%, #6366f1 40%, #a855f7 100%);
|
| 48 |
+
-webkit-background-clip: text;
|
| 49 |
+
-webkit-text-fill-color: transparent;
|
| 50 |
+
margin-bottom: 0.2rem;
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
.subtitle {
|
| 54 |
+
font-size: 1.05rem;
|
| 55 |
+
color: #9ca3af;
|
| 56 |
+
margin-bottom: 1.1rem;
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
.metric-row {
|
| 60 |
+
display: flex;
|
| 61 |
+
flex-wrap: wrap;
|
| 62 |
+
gap: 0.9rem;
|
| 63 |
+
margin-top: 0.3rem;
|
| 64 |
+
margin-bottom: 1.0rem;
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
.metric-card {
|
| 68 |
+
background: radial-gradient(circle at 0% 0%, rgba(56, 189, 248, 0.18), rgba(15, 23, 42, 0.96));
|
| 69 |
+
padding: 0.9rem 1.2rem;
|
| 70 |
+
border-radius: 14px;
|
| 71 |
+
color: #e5e7eb;
|
| 72 |
+
box-shadow:
|
| 73 |
+
0 14px 40px rgba(15, 23, 42, 0.9),
|
| 74 |
+
0 0 0 1px rgba(148, 163, 184, 0.45);
|
| 75 |
+
min-width: 160px;
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
.metric-card-label {
|
| 79 |
+
font-size: 0.75rem;
|
| 80 |
+
letter-spacing: 0.08em;
|
| 81 |
+
text-transform: uppercase;
|
| 82 |
+
color: #9ca3af;
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
.metric-card-value {
|
| 86 |
+
font-size: 1.45rem;
|
| 87 |
+
font-weight: 700;
|
| 88 |
+
margin-top: 0.15rem;
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
.info-box {
|
| 92 |
+
background: radial-gradient(circle at 0% 0%, rgba(45, 212, 191, 0.25), rgba(56, 189, 248, 0.10));
|
| 93 |
+
padding: 0.9rem 1.2rem;
|
| 94 |
+
border-radius: 14px;
|
| 95 |
+
border-left: 4px solid #22d3ee;
|
| 96 |
+
margin: 0.7rem 0 1.0rem 0;
|
| 97 |
+
color: #e0f2fe;
|
| 98 |
+
box-shadow: 0 16px 40px rgba(15, 23, 42, 0.9);
|
| 99 |
+
backdrop-filter: blur(18px);
|
| 100 |
+
}
|
| 101 |
+
|
| 102 |
+
.tip-box {
|
| 103 |
+
background: linear-gradient(135deg, rgba(250, 204, 21, 0.12), rgba(251, 191, 36, 0.04));
|
| 104 |
+
padding: 0.75rem 1rem;
|
| 105 |
+
border-radius: 10px;
|
| 106 |
+
border-left: 3px solid rgba(250, 204, 21, 0.7);
|
| 107 |
+
margin: 0.4rem 0;
|
| 108 |
+
font-size: 0.9rem;
|
| 109 |
+
color: #facc15;
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
.code-box {
|
| 113 |
+
background: #020617;
|
| 114 |
+
color: #e5e7eb;
|
| 115 |
+
padding: 0.9rem 1rem;
|
| 116 |
+
border-radius: 12px;
|
| 117 |
+
border: 1px solid rgba(148, 163, 184, 0.5);
|
| 118 |
+
margin: 0.5rem 0;
|
| 119 |
+
font-size: 0.9rem;
|
| 120 |
+
box-shadow: 0 14px 36px rgba(15, 23, 42, 0.9);
|
| 121 |
+
}
|
| 122 |
+
|
| 123 |
+
.plot-container {
|
| 124 |
+
background: radial-gradient(circle at 0% 0%, rgba(148, 163, 184, 0.16), rgba(15, 23, 42, 0.96));
|
| 125 |
+
padding: 1.4rem 1.5rem;
|
| 126 |
+
border-radius: 18px;
|
| 127 |
+
box-shadow:
|
| 128 |
+
0 20px 50px rgba(15, 23, 42, 0.95),
|
| 129 |
+
0 0 0 1px rgba(148, 163, 184, 0.4);
|
| 130 |
+
margin: 1.0rem 0 1.4rem 0;
|
| 131 |
+
border: 1px solid rgba(148, 163, 184, 0.35);
|
| 132 |
+
}
|
| 133 |
+
|
| 134 |
+
.control-panel {
|
| 135 |
+
background: linear-gradient(145deg, rgba(15, 23, 42, 0.98), rgba(30, 64, 175, 0.85));
|
| 136 |
+
padding: 0.8rem 1.1rem;
|
| 137 |
+
border-radius: 999px;
|
| 138 |
+
box-shadow:
|
| 139 |
+
0 16px 40px rgba(15, 23, 42, 0.9),
|
| 140 |
+
0 0 0 1px rgba(129, 140, 248, 0.7);
|
| 141 |
+
color: #e5e7eb;
|
| 142 |
+
margin-bottom: 0.7rem;
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
.control-panel-header {
|
| 146 |
+
font-size: 0.85rem;
|
| 147 |
+
font-weight: 700;
|
| 148 |
+
text-transform: uppercase;
|
| 149 |
+
letter-spacing: 0.12em;
|
| 150 |
+
margin: 0;
|
| 151 |
+
color: #e5e7eb;
|
| 152 |
+
opacity: 0.98;
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
.stTabs [data-baseweb="tab-list"] {
|
| 156 |
+
gap: 0.7rem;
|
| 157 |
+
background: transparent;
|
| 158 |
+
padding: 0.4rem 0 0.8rem 0;
|
| 159 |
+
border-radius: 0;
|
| 160 |
+
border-bottom: 1px solid rgba(148, 163, 184, 0.35);
|
| 161 |
+
}
|
| 162 |
+
|
| 163 |
+
.stTabs [data-baseweb="tab"] {
|
| 164 |
+
height: 3.3rem;
|
| 165 |
+
padding: 0 1.8rem;
|
| 166 |
+
font-weight: 600;
|
| 167 |
+
border-radius: 999px;
|
| 168 |
+
background: rgba(15, 23, 42, 0.86);
|
| 169 |
+
border: 1px solid rgba(148, 163, 184, 0.5);
|
| 170 |
+
color: #e5e7eb;
|
| 171 |
+
transition: transform 0.18s ease, background 0.18s ease,
|
| 172 |
+
border-color 0.18s ease, box-shadow 0.18s ease;
|
| 173 |
+
}
|
| 174 |
+
|
| 175 |
+
.stTabs [data-baseweb="tab"]:hover {
|
| 176 |
+
transform: translateY(-1px);
|
| 177 |
+
border-color: rgba(129, 140, 248, 0.9);
|
| 178 |
+
box-shadow: 0 10px 22px rgba(15, 23, 42, 0.85);
|
| 179 |
+
}
|
| 180 |
+
|
| 181 |
+
.stTabs [data-baseweb="tab"][aria-selected="true"] {
|
| 182 |
+
background: linear-gradient(135deg, #6366f1, #ec4899);
|
| 183 |
+
color: #ffffff;
|
| 184 |
+
border-color: transparent;
|
| 185 |
+
box-shadow:
|
| 186 |
+
0 0 0 1px rgba(15, 23, 42, 0.9),
|
| 187 |
+
0 14px 30px rgba(15, 23, 42, 0.95);
|
| 188 |
+
}
|
| 189 |
+
</style>
|
| 190 |
+
""",
|
| 191 |
+
unsafe_allow_html=True,
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
# ==================== SESSION STATE ====================
|
| 195 |
+
if "gallery" not in st.session_state:
|
| 196 |
+
st.session_state["gallery"] = []
|
| 197 |
+
|
| 198 |
+
if "export_dpi" not in st.session_state:
|
| 199 |
+
st.session_state["export_dpi"] = 300
|
| 200 |
+
|
| 201 |
+
# ==================== HELPERS ====================
|
| 202 |
+
def use_theme(context: str = "notebook", style: str = "whitegrid", palette: str = "deep") -> None:
|
| 203 |
+
sns.set_theme(context=context, style=style)
|
| 204 |
+
sns.set_palette(palette)
|
| 205 |
+
plt.rcParams.update(
|
| 206 |
+
{
|
| 207 |
+
"figure.figsize": (10, 6),
|
| 208 |
+
"savefig.dpi": 300,
|
| 209 |
+
"figure.dpi": 150,
|
| 210 |
+
"axes.spines.top": False,
|
| 211 |
+
"axes.spines.right": False,
|
| 212 |
+
"figure.autolayout": True,
|
| 213 |
+
"grid.alpha": 0.3,
|
| 214 |
+
"grid.linestyle": "--",
|
| 215 |
+
"font.size": 10,
|
| 216 |
+
"axes.labelsize": 11,
|
| 217 |
+
"axes.titlesize": 13,
|
| 218 |
+
"legend.fontsize": 9,
|
| 219 |
+
}
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def apply_dark(fig: plt.Figure, dark: bool = False) -> None:
|
| 224 |
+
if not dark:
|
| 225 |
+
return
|
| 226 |
+
fig.patch.set_facecolor("#020617")
|
| 227 |
+
for ax in fig.get_axes():
|
| 228 |
+
ax.set_facecolor("#020617")
|
| 229 |
+
ax.tick_params(colors="#e5e7eb")
|
| 230 |
+
for spine in ax.spines.values():
|
| 231 |
+
spine.set_color("#4b5563")
|
| 232 |
+
for item in [ax.title, ax.xaxis.label, ax.yaxis.label]:
|
| 233 |
+
if item:
|
| 234 |
+
item.set_color("#e5e7eb")
|
| 235 |
+
for t in ax.get_xticklabels() + ax.get_yticklabels():
|
| 236 |
+
t.set_color("#e5e7eb")
|
| 237 |
+
legend = ax.get_legend()
|
| 238 |
+
if legend:
|
| 239 |
+
legend.get_frame().set_facecolor("#020617")
|
| 240 |
+
for text in legend.get_texts():
|
| 241 |
+
text.set_color("#e5e7eb")
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
@st.cache_data
|
| 245 |
+
def load_builtin_data() -> dict:
|
| 246 |
+
return {
|
| 247 |
+
"Tips": sns.load_dataset("tips"),
|
| 248 |
+
"Penguins": sns.load_dataset("penguins").dropna(),
|
| 249 |
+
"Flights": sns.load_dataset("flights"),
|
| 250 |
+
"Iris": sns.load_dataset("iris"),
|
| 251 |
+
"Diamonds (1K sample)": sns.load_dataset("diamonds").sample(1000, random_state=42),
|
| 252 |
+
"Titanic": sns.load_dataset("titanic"),
|
| 253 |
+
"Car Crashes": sns.load_dataset("car_crashes"),
|
| 254 |
+
}
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def save_to_gallery(fig: plt.Figure, name: str, description: str) -> None:
|
| 258 |
+
buf = io.BytesIO()
|
| 259 |
+
dpi = st.session_state.get("export_dpi", 300)
|
| 260 |
+
fig.savefig(
|
| 261 |
+
buf,
|
| 262 |
+
dpi=dpi,
|
| 263 |
+
bbox_inches="tight",
|
| 264 |
+
format="png",
|
| 265 |
+
facecolor=fig.get_facecolor(),
|
| 266 |
+
)
|
| 267 |
+
buf.seek(0)
|
| 268 |
+
st.session_state["gallery"].append(
|
| 269 |
+
{
|
| 270 |
+
"name": name,
|
| 271 |
+
"description": description,
|
| 272 |
+
"image": buf.getvalue(),
|
| 273 |
+
"timestamp": datetime.now(),
|
| 274 |
+
}
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
def show_code_example(code: str, description: str = "") -> None:
|
| 279 |
+
if description:
|
| 280 |
+
st.markdown(
|
| 281 |
+
f'<div class="tip-box"><strong>Tip:</strong> {description}</div>',
|
| 282 |
+
unsafe_allow_html=True,
|
| 283 |
+
)
|
| 284 |
+
st.markdown('<div class="code-box">', unsafe_allow_html=True)
|
| 285 |
+
st.code(code, language="python")
|
| 286 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 287 |
+
|
| 288 |
+
# ==================== HEADER ====================
|
| 289 |
+
st.markdown(
|
| 290 |
+
'<h1 class="main-header">Seaborn & Matplotlib Visual Lab</h1>',
|
| 291 |
+
unsafe_allow_html=True,
|
| 292 |
+
)
|
| 293 |
+
st.markdown(
|
| 294 |
+
'<p class="subtitle">Interactive environment to explore, compare, and export visualizations with Seaborn and Matplotlib.</p>',
|
| 295 |
+
unsafe_allow_html=True,
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
# ==================== SIDEBAR ====================
|
| 299 |
+
with st.sidebar:
|
| 300 |
+
st.markdown("### Data settings")
|
| 301 |
+
|
| 302 |
+
# Built-in datasets only
|
| 303 |
+
builtin = load_builtin_data()
|
| 304 |
+
dataset_label = st.selectbox(
|
| 305 |
+
"Built-in only",
|
| 306 |
+
list(builtin.keys()),
|
| 307 |
+
key="sb_dataset",
|
| 308 |
+
)
|
| 309 |
+
df = builtin[dataset_label]
|
| 310 |
+
|
| 311 |
+
st.markdown("---")
|
| 312 |
+
|
| 313 |
+
with st.expander("Visual theme", expanded=False):
|
| 314 |
+
context = st.selectbox(
|
| 315 |
+
"Seaborn context",
|
| 316 |
+
["notebook", "paper", "talk", "poster"],
|
| 317 |
+
index=0,
|
| 318 |
+
key="sb_context",
|
| 319 |
+
)
|
| 320 |
+
style = st.selectbox(
|
| 321 |
+
"Seaborn style",
|
| 322 |
+
["whitegrid", "darkgrid", "white", "dark", "ticks"],
|
| 323 |
+
index=0,
|
| 324 |
+
key="sb_style",
|
| 325 |
+
)
|
| 326 |
+
palette = st.selectbox(
|
| 327 |
+
"Color palette",
|
| 328 |
+
["deep", "muted", "bright", "pastel", "dark", "colorblind", "Set2", "husl"],
|
| 329 |
+
index=0,
|
| 330 |
+
key="sb_palette",
|
| 331 |
+
)
|
| 332 |
+
use_theme(context, style, palette)
|
| 333 |
+
|
| 334 |
+
theme_mode = st.radio(
|
| 335 |
+
"Figure mode",
|
| 336 |
+
["Light", "Dark"],
|
| 337 |
+
index=1,
|
| 338 |
+
horizontal=True,
|
| 339 |
+
key="sb_theme_mode",
|
| 340 |
+
)
|
| 341 |
+
DARK = theme_mode == "Dark"
|
| 342 |
+
|
| 343 |
+
st.markdown("---")
|
| 344 |
+
|
| 345 |
+
st.markdown("### Export settings")
|
| 346 |
+
dpi = st.slider(
|
| 347 |
+
"Image quality (DPI)",
|
| 348 |
+
72,
|
| 349 |
+
600,
|
| 350 |
+
300,
|
| 351 |
+
step=50,
|
| 352 |
+
key="sb_dpi",
|
| 353 |
+
)
|
| 354 |
+
st.session_state["export_dpi"] = dpi
|
| 355 |
+
|
| 356 |
+
if st.session_state["gallery"]:
|
| 357 |
+
st.success(f"{len(st.session_state['gallery'])} plots in gallery")
|
| 358 |
+
if st.button("Clear gallery", key="sb_clear_gallery"):
|
| 359 |
+
st.session_state["gallery"] = []
|
| 360 |
+
st.rerun()
|
| 361 |
+
|
| 362 |
+
# fallback
|
| 363 |
+
if df is None:
|
| 364 |
+
df = builtin["Tips"]
|
| 365 |
+
dataset_label = "Tips"
|
| 366 |
+
|
| 367 |
+
numeric_cols_all = df.select_dtypes(include=[np.number]).columns.tolist()
|
| 368 |
+
categorical_cols_all = df.select_dtypes(include=["object", "category"]).columns.tolist()
|
| 369 |
+
missing_ratio = float(df.isna().mean().mean() * 100)
|
| 370 |
+
|
| 371 |
+
# ==================== TOP METRICS ====================
|
| 372 |
+
st.markdown(
|
| 373 |
+
f"""
|
| 374 |
+
<div class="metric-row">
|
| 375 |
+
<div class="metric-card">
|
| 376 |
+
<div class="metric-card-label">Dataset</div>
|
| 377 |
+
<div class="metric-card-value">{dataset_label}</div>
|
| 378 |
+
</div>
|
| 379 |
+
<div class="metric-card">
|
| 380 |
+
<div class="metric-card-label">Rows</div>
|
| 381 |
+
<div class="metric-card-value">{len(df):,}</div>
|
| 382 |
+
</div>
|
| 383 |
+
<div class="metric-card">
|
| 384 |
+
<div class="metric-card-label">Columns</div>
|
| 385 |
+
<div class="metric-card-value">{len(df.columns):,}</div>
|
| 386 |
+
</div>
|
| 387 |
+
<div class="metric-card">
|
| 388 |
+
<div class="metric-card-label">Numeric features</div>
|
| 389 |
+
<div class="metric-card-value">{len(numeric_cols_all)}</div>
|
| 390 |
+
</div>
|
| 391 |
+
<div class="metric-card">
|
| 392 |
+
<div class="metric-card-label">Categorical features</div>
|
| 393 |
+
<div class="metric-card-value">{len(categorical_cols_all)}</div>
|
| 394 |
+
</div>
|
| 395 |
+
<div class="metric-card">
|
| 396 |
+
<div class="metric-card-label">Missing ratio</div>
|
| 397 |
+
<div class="metric-card-value">{missing_ratio:.1f}%</div>
|
| 398 |
+
</div>
|
| 399 |
+
</div>
|
| 400 |
+
""",
|
| 401 |
+
unsafe_allow_html=True,
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
# ==================== TABS ====================
|
| 405 |
+
tab_overview, tab_seaborn, tab_mpl, tab_compare, tab_gallery = st.tabs(
|
| 406 |
+
[
|
| 407 |
+
"Overview",
|
| 408 |
+
"Seaborn builder",
|
| 409 |
+
"Matplotlib builder",
|
| 410 |
+
"Compare",
|
| 411 |
+
"Gallery",
|
| 412 |
+
]
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
# ==================== TAB: OVERVIEW ====================
|
| 416 |
+
with tab_overview:
|
| 417 |
+
st.markdown("## Overview")
|
| 418 |
+
st.markdown(
|
| 419 |
+
'<div class="info-box"><strong>Goal:</strong> Quick health check of the current dataset and a first look at its distributions.</div>',
|
| 420 |
+
unsafe_allow_html=True,
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
col_left, col_right = st.columns([2, 1])
|
| 424 |
+
|
| 425 |
+
with col_left:
|
| 426 |
+
st.markdown("### Sample")
|
| 427 |
+
st.dataframe(df.head(10), use_container_width=True)
|
| 428 |
+
|
| 429 |
+
if numeric_cols_all:
|
| 430 |
+
st.markdown("### Quick distribution")
|
| 431 |
+
dist_col = st.selectbox(
|
| 432 |
+
"Numeric column",
|
| 433 |
+
numeric_cols_all,
|
| 434 |
+
key="ov_dist_col",
|
| 435 |
+
)
|
| 436 |
+
fig, ax = plt.subplots(figsize=(10, 4))
|
| 437 |
+
sns.histplot(df, x=dist_col, bins=30, kde=True, ax=ax)
|
| 438 |
+
ax.set_title(f"{dist_col} distribution", fontsize=13, fontweight="bold")
|
| 439 |
+
apply_dark(fig, DARK)
|
| 440 |
+
st.pyplot(fig)
|
| 441 |
+
|
| 442 |
+
with col_right:
|
| 443 |
+
st.markdown("### Types & missing")
|
| 444 |
+
schema_data = {
|
| 445 |
+
"column": df.columns,
|
| 446 |
+
"dtype": df.dtypes.astype(str),
|
| 447 |
+
"missing_%": (df.isna().mean() * 100).round(1),
|
| 448 |
+
}
|
| 449 |
+
schema_df = pd.DataFrame(schema_data)
|
| 450 |
+
st.dataframe(schema_df, height=260, use_container_width=True)
|
| 451 |
+
|
| 452 |
+
if len(numeric_cols_all) >= 2:
|
| 453 |
+
st.markdown("### Small correlation view")
|
| 454 |
+
cols_small = numeric_cols_all[: min(4, len(numeric_cols_all))]
|
| 455 |
+
corr = df[cols_small].corr()
|
| 456 |
+
fig2, ax2 = plt.subplots(figsize=(4, 4))
|
| 457 |
+
sns.heatmap(
|
| 458 |
+
corr,
|
| 459 |
+
annot=True,
|
| 460 |
+
fmt=".2f",
|
| 461 |
+
cmap="vlag",
|
| 462 |
+
center=0,
|
| 463 |
+
square=True,
|
| 464 |
+
cbar=False,
|
| 465 |
+
ax=ax2,
|
| 466 |
+
)
|
| 467 |
+
ax2.set_title("Correlation (subset)", fontsize=11, fontweight="bold")
|
| 468 |
+
apply_dark(fig2, DARK)
|
| 469 |
+
st.pyplot(fig2)
|
| 470 |
+
|
| 471 |
+
# ==================== TAB: SEABORN BUILDER ====================
|
| 472 |
+
with tab_seaborn:
|
| 473 |
+
st.markdown("## Seaborn builder")
|
| 474 |
+
st.markdown(
|
| 475 |
+
'<div class="info-box"><strong>Goal:</strong> Build Seaborn plots by selecting columns and options. The code snippet updates automatically.</div>',
|
| 476 |
+
unsafe_allow_html=True,
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
if df.empty:
|
| 480 |
+
st.warning("No data loaded.")
|
| 481 |
+
else:
|
| 482 |
+
col_plot, col_ctrl = st.columns([7, 3])
|
| 483 |
+
|
| 484 |
+
with col_ctrl:
|
| 485 |
+
# Pill with header INSIDE
|
| 486 |
+
st.markdown(
|
| 487 |
+
"""
|
| 488 |
+
<div class="control-panel">
|
| 489 |
+
<div class="control-panel-header">PLOT SETUP</div>
|
| 490 |
+
</div>
|
| 491 |
+
""",
|
| 492 |
+
unsafe_allow_html=True,
|
| 493 |
+
)
|
| 494 |
+
|
| 495 |
+
family = st.selectbox(
|
| 496 |
+
"Plot family",
|
| 497 |
+
[
|
| 498 |
+
"Distribution",
|
| 499 |
+
"Relationship",
|
| 500 |
+
"Category",
|
| 501 |
+
"Matrix / Heatmap",
|
| 502 |
+
"Multi-variable",
|
| 503 |
+
],
|
| 504 |
+
key="sb_family",
|
| 505 |
+
)
|
| 506 |
+
|
| 507 |
+
code_str = ""
|
| 508 |
+
description = ""
|
| 509 |
+
fig_seaborn = None
|
| 510 |
+
|
| 511 |
+
if family == "Distribution":
|
| 512 |
+
kind = st.selectbox(
|
| 513 |
+
"Plot type",
|
| 514 |
+
[
|
| 515 |
+
"Histogram",
|
| 516 |
+
"KDE",
|
| 517 |
+
"Histogram + KDE",
|
| 518 |
+
"Box",
|
| 519 |
+
"Violin",
|
| 520 |
+
"ECDF",
|
| 521 |
+
],
|
| 522 |
+
key="sb_dist_kind",
|
| 523 |
+
)
|
| 524 |
+
if not numeric_cols_all:
|
| 525 |
+
num_col = None
|
| 526 |
+
st.error("No numeric columns in this dataset.")
|
| 527 |
+
else:
|
| 528 |
+
num_col = st.selectbox(
|
| 529 |
+
"Numeric column",
|
| 530 |
+
numeric_cols_all,
|
| 531 |
+
key="sb_dist_num",
|
| 532 |
+
)
|
| 533 |
+
|
| 534 |
+
hue_col = None
|
| 535 |
+
if categorical_cols_all and kind in ["Histogram", "KDE", "Histogram + KDE", "ECDF"]:
|
| 536 |
+
use_hue_dist = st.checkbox(
|
| 537 |
+
"Color by category",
|
| 538 |
+
value=False,
|
| 539 |
+
key="sb_dist_use_hue",
|
| 540 |
+
)
|
| 541 |
+
if use_hue_dist:
|
| 542 |
+
hue_col = st.selectbox(
|
| 543 |
+
"Hue",
|
| 544 |
+
categorical_cols_all,
|
| 545 |
+
key="sb_dist_hue",
|
| 546 |
+
)
|
| 547 |
+
bins = st.slider(
|
| 548 |
+
"Bins (for histogram)",
|
| 549 |
+
5,
|
| 550 |
+
80,
|
| 551 |
+
30,
|
| 552 |
+
key="sb_dist_bins",
|
| 553 |
+
)
|
| 554 |
+
log_scale = st.checkbox(
|
| 555 |
+
"Log scale on x",
|
| 556 |
+
value=False,
|
| 557 |
+
key="sb_dist_log",
|
| 558 |
+
)
|
| 559 |
+
|
| 560 |
+
elif family == "Relationship":
|
| 561 |
+
rel_kind = st.selectbox(
|
| 562 |
+
"Plot type",
|
| 563 |
+
[
|
| 564 |
+
"Scatter",
|
| 565 |
+
"Regression",
|
| 566 |
+
"Line",
|
| 567 |
+
],
|
| 568 |
+
key="sb_rel_kind",
|
| 569 |
+
)
|
| 570 |
+
if len(numeric_cols_all) < 2:
|
| 571 |
+
x_rel = y_rel = None
|
| 572 |
+
st.error("Need at least two numeric columns.")
|
| 573 |
+
else:
|
| 574 |
+
x_rel = st.selectbox(
|
| 575 |
+
"X variable",
|
| 576 |
+
numeric_cols_all,
|
| 577 |
+
key="sb_rel_x",
|
| 578 |
+
)
|
| 579 |
+
y_rel = st.selectbox(
|
| 580 |
+
"Y variable",
|
| 581 |
+
[c for c in numeric_cols_all if c != x_rel],
|
| 582 |
+
key="sb_rel_y",
|
| 583 |
+
)
|
| 584 |
+
hue_rel = None
|
| 585 |
+
if categorical_cols_all and rel_kind in ["Scatter", "Line"]:
|
| 586 |
+
use_hue_rel = st.checkbox(
|
| 587 |
+
"Color by category",
|
| 588 |
+
value=False,
|
| 589 |
+
key="sb_rel_use_hue",
|
| 590 |
+
)
|
| 591 |
+
if use_hue_rel:
|
| 592 |
+
hue_rel = st.selectbox(
|
| 593 |
+
"Hue",
|
| 594 |
+
categorical_cols_all,
|
| 595 |
+
key="sb_rel_hue",
|
| 596 |
+
)
|
| 597 |
+
alpha_rel = st.slider(
|
| 598 |
+
"Point transparency",
|
| 599 |
+
0.1,
|
| 600 |
+
1.0,
|
| 601 |
+
0.7,
|
| 602 |
+
0.05,
|
| 603 |
+
key="sb_rel_alpha",
|
| 604 |
+
)
|
| 605 |
+
|
| 606 |
+
elif family == "Category":
|
| 607 |
+
if not categorical_cols_all:
|
| 608 |
+
st.error("No categorical columns in this dataset.")
|
| 609 |
+
cat_var = num_cat = None
|
| 610 |
+
else:
|
| 611 |
+
cat_var = st.selectbox(
|
| 612 |
+
"Category",
|
| 613 |
+
categorical_cols_all,
|
| 614 |
+
key="sb_cat_var",
|
| 615 |
+
)
|
| 616 |
+
cat_kind = st.selectbox(
|
| 617 |
+
"Plot type",
|
| 618 |
+
[
|
| 619 |
+
"Count",
|
| 620 |
+
"Bar (mean)",
|
| 621 |
+
"Box",
|
| 622 |
+
"Violin",
|
| 623 |
+
],
|
| 624 |
+
key="sb_cat_kind",
|
| 625 |
+
)
|
| 626 |
+
num_cat = None
|
| 627 |
+
if cat_kind in ["Bar (mean)", "Box", "Violin"]:
|
| 628 |
+
if not numeric_cols_all:
|
| 629 |
+
st.error("No numeric columns for this plot type.")
|
| 630 |
+
else:
|
| 631 |
+
num_cat = st.selectbox(
|
| 632 |
+
"Numeric column",
|
| 633 |
+
numeric_cols_all,
|
| 634 |
+
key="sb_cat_num",
|
| 635 |
+
)
|
| 636 |
+
|
| 637 |
+
if cat_var is not None:
|
| 638 |
+
order_top = st.slider(
|
| 639 |
+
"Top categories",
|
| 640 |
+
3,
|
| 641 |
+
min(15, df[cat_var].nunique()),
|
| 642 |
+
min(8, df[cat_var].nunique()),
|
| 643 |
+
key="sb_cat_top",
|
| 644 |
+
)
|
| 645 |
+
|
| 646 |
+
elif family == "Matrix / Heatmap":
|
| 647 |
+
if len(numeric_cols_all) < 2:
|
| 648 |
+
st.error("Need at least two numeric columns.")
|
| 649 |
+
selected_hm = []
|
| 650 |
+
else:
|
| 651 |
+
selected_hm = st.multiselect(
|
| 652 |
+
"Numeric variables",
|
| 653 |
+
numeric_cols_all,
|
| 654 |
+
default=numeric_cols_all[: min(6, len(numeric_cols_all))],
|
| 655 |
+
key="sb_hm_vars",
|
| 656 |
+
)
|
| 657 |
+
annot_hm = st.checkbox(
|
| 658 |
+
"Show values",
|
| 659 |
+
value=True,
|
| 660 |
+
key="sb_hm_annot",
|
| 661 |
+
)
|
| 662 |
+
center_zero = st.checkbox(
|
| 663 |
+
"Center at zero",
|
| 664 |
+
value=True,
|
| 665 |
+
key="sb_hm_center",
|
| 666 |
+
)
|
| 667 |
+
|
| 668 |
+
else: # Multi-variable
|
| 669 |
+
if len(numeric_cols_all) < 2:
|
| 670 |
+
st.error("Need at least two numeric columns.")
|
| 671 |
+
multi_vars = []
|
| 672 |
+
else:
|
| 673 |
+
multi_vars = st.multiselect(
|
| 674 |
+
"Numeric variables",
|
| 675 |
+
numeric_cols_all,
|
| 676 |
+
default=numeric_cols_all[: min(4, len(numeric_cols_all))],
|
| 677 |
+
key="sb_multi_vars",
|
| 678 |
+
)
|
| 679 |
+
sample_n = st.slider(
|
| 680 |
+
"Sample rows",
|
| 681 |
+
100,
|
| 682 |
+
min(len(df), 1000),
|
| 683 |
+
min(400, len(df)),
|
| 684 |
+
key="sb_multi_sample",
|
| 685 |
+
)
|
| 686 |
+
hue_multi = None
|
| 687 |
+
if categorical_cols_all:
|
| 688 |
+
use_hue_multi = st.checkbox(
|
| 689 |
+
"Color by category",
|
| 690 |
+
value=False,
|
| 691 |
+
key="sb_multi_use_hue",
|
| 692 |
+
)
|
| 693 |
+
if use_hue_multi:
|
| 694 |
+
hue_multi = st.selectbox(
|
| 695 |
+
"Hue",
|
| 696 |
+
categorical_cols_all,
|
| 697 |
+
key="sb_multi_hue",
|
| 698 |
+
)
|
| 699 |
+
|
| 700 |
+
with col_plot:
|
| 701 |
+
st.markdown('<div class="plot-container">', unsafe_allow_html=True)
|
| 702 |
+
|
| 703 |
+
# ------- Distribution -------
|
| 704 |
+
if family == "Distribution" and numeric_cols_all and num_col is not None:
|
| 705 |
+
fig_seaborn, ax = plt.subplots(figsize=(10, 5))
|
| 706 |
+
|
| 707 |
+
if kind == "Histogram":
|
| 708 |
+
sns.histplot(
|
| 709 |
+
data=df,
|
| 710 |
+
x=num_col,
|
| 711 |
+
bins=bins,
|
| 712 |
+
hue=hue_col,
|
| 713 |
+
kde=False,
|
| 714 |
+
ax=ax,
|
| 715 |
+
log_scale=log_scale,
|
| 716 |
+
)
|
| 717 |
+
elif kind == "KDE":
|
| 718 |
+
sns.kdeplot(
|
| 719 |
+
data=df,
|
| 720 |
+
x=num_col,
|
| 721 |
+
hue=hue_col,
|
| 722 |
+
fill=True,
|
| 723 |
+
ax=ax,
|
| 724 |
+
log_scale=log_scale,
|
| 725 |
+
)
|
| 726 |
+
elif kind == "Histogram + KDE":
|
| 727 |
+
sns.histplot(
|
| 728 |
+
data=df,
|
| 729 |
+
x=num_col,
|
| 730 |
+
bins=bins,
|
| 731 |
+
hue=hue_col,
|
| 732 |
+
kde=True,
|
| 733 |
+
ax=ax,
|
| 734 |
+
log_scale=log_scale,
|
| 735 |
+
)
|
| 736 |
+
elif kind == "Box":
|
| 737 |
+
sns.boxplot(
|
| 738 |
+
data=df,
|
| 739 |
+
x=num_col,
|
| 740 |
+
ax=ax,
|
| 741 |
+
)
|
| 742 |
+
elif kind == "Violin":
|
| 743 |
+
sns.violinplot(
|
| 744 |
+
data=df,
|
| 745 |
+
x=num_col,
|
| 746 |
+
ax=ax,
|
| 747 |
+
)
|
| 748 |
+
else: # ECDF
|
| 749 |
+
sns.ecdfplot(
|
| 750 |
+
data=df,
|
| 751 |
+
x=num_col,
|
| 752 |
+
hue=hue_col,
|
| 753 |
+
ax=ax,
|
| 754 |
+
)
|
| 755 |
+
ax.yaxis.set_major_formatter(
|
| 756 |
+
FuncFormatter(lambda y, _: f"{y:.0%}")
|
| 757 |
+
)
|
| 758 |
+
|
| 759 |
+
ax.set_title(f"{kind} for {num_col}", fontsize=13, fontweight="bold")
|
| 760 |
+
apply_dark(fig_seaborn, DARK)
|
| 761 |
+
st.pyplot(fig_seaborn)
|
| 762 |
+
|
| 763 |
+
hue_part = f', hue="{hue_col}"' if hue_col else ""
|
| 764 |
+
extra_kwargs = ""
|
| 765 |
+
if kind in ["Histogram", "Histogram + KDE"]:
|
| 766 |
+
extra_kwargs = f", bins={bins}"
|
| 767 |
+
if log_scale:
|
| 768 |
+
extra_kwargs += ", log_scale=True"
|
| 769 |
+
if kind in ["KDE", "ECDF"] and log_scale:
|
| 770 |
+
extra_kwargs = ", log_scale=True"
|
| 771 |
+
if kind == "Histogram + KDE":
|
| 772 |
+
fn = "histplot"
|
| 773 |
+
extra_kwargs = f", bins={bins}, kde=True"
|
| 774 |
+
elif kind == "Histogram":
|
| 775 |
+
fn = "histplot"
|
| 776 |
+
elif kind == "KDE":
|
| 777 |
+
fn = "kdeplot"
|
| 778 |
+
elif kind == "Box":
|
| 779 |
+
fn = "boxplot"
|
| 780 |
+
elif kind == "Violin":
|
| 781 |
+
fn = "violinplot"
|
| 782 |
+
else:
|
| 783 |
+
fn = "ecdfplot"
|
| 784 |
+
|
| 785 |
+
code_str = f"""fig, ax = plt.subplots(figsize=(10, 5))
|
| 786 |
+
sns.{fn}(data=df, x="{num_col}"{hue_part}{extra_kwargs}, ax=ax)
|
| 787 |
+
ax.set_title("{kind} for {num_col}")
|
| 788 |
+
plt.show()"""
|
| 789 |
+
description = "Distribution pattern: shape, spread, and tails of a single numeric column."
|
| 790 |
+
|
| 791 |
+
# ------- Relationship -------
|
| 792 |
+
elif family == "Relationship" and len(numeric_cols_all) >= 2 and x_rel is not None:
|
| 793 |
+
fig_seaborn, ax = plt.subplots(figsize=(10, 5))
|
| 794 |
+
|
| 795 |
+
if rel_kind == "Scatter":
|
| 796 |
+
sns.scatterplot(
|
| 797 |
+
data=df,
|
| 798 |
+
x=x_rel,
|
| 799 |
+
y=y_rel,
|
| 800 |
+
hue=hue_rel,
|
| 801 |
+
alpha=alpha_rel,
|
| 802 |
+
s=70,
|
| 803 |
+
ax=ax,
|
| 804 |
+
)
|
| 805 |
+
elif rel_kind == "Line":
|
| 806 |
+
sns.lineplot(
|
| 807 |
+
data=df,
|
| 808 |
+
x=x_rel,
|
| 809 |
+
y=y_rel,
|
| 810 |
+
hue=hue_rel,
|
| 811 |
+
ax=ax,
|
| 812 |
+
)
|
| 813 |
+
else: # Regression
|
| 814 |
+
sns.regplot(
|
| 815 |
+
data=df,
|
| 816 |
+
x=x_rel,
|
| 817 |
+
y=y_rel,
|
| 818 |
+
ax=ax,
|
| 819 |
+
scatter_kws={"alpha": alpha_rel, "s": 60},
|
| 820 |
+
line_kws={"linewidth": 2},
|
| 821 |
+
)
|
| 822 |
+
|
| 823 |
+
ax.set_title(
|
| 824 |
+
f"{rel_kind}: {y_rel} vs {x_rel}",
|
| 825 |
+
fontsize=13,
|
| 826 |
+
fontweight="bold",
|
| 827 |
+
)
|
| 828 |
+
apply_dark(fig_seaborn, DARK)
|
| 829 |
+
st.pyplot(fig_seaborn)
|
| 830 |
+
|
| 831 |
+
if rel_kind == "Scatter":
|
| 832 |
+
hue_part = f', hue="{hue_rel}"' if hue_rel else ""
|
| 833 |
+
code_str = f"""fig, ax = plt.subplots(figsize=(10, 5))
|
| 834 |
+
sns.scatterplot(
|
| 835 |
+
data=df,
|
| 836 |
+
x="{x_rel}",
|
| 837 |
+
y="{y_rel}"{hue_part},
|
| 838 |
+
alpha=0.7,
|
| 839 |
+
s=70,
|
| 840 |
+
ax=ax,
|
| 841 |
+
)
|
| 842 |
+
ax.set_title("Scatter: {y_rel} vs {x_rel}")
|
| 843 |
+
plt.show()"""
|
| 844 |
+
elif rel_kind == "Line":
|
| 845 |
+
hue_part = f', hue="{hue_rel}"' if hue_rel else ""
|
| 846 |
+
code_str = f"""fig, ax = plt.subplots(figsize=(10, 5))
|
| 847 |
+
sns.lineplot(
|
| 848 |
+
data=df,
|
| 849 |
+
x="{x_rel}",
|
| 850 |
+
y="{y_rel}"{hue_part},
|
| 851 |
+
ax=ax,
|
| 852 |
+
)
|
| 853 |
+
ax.set_title("Line: {y_rel} vs {x_rel}")
|
| 854 |
+
plt.show()"""
|
| 855 |
+
else:
|
| 856 |
+
code_str = f"""fig, ax = plt.subplots(figsize=(10, 5))
|
| 857 |
+
sns.regplot(
|
| 858 |
+
data=df,
|
| 859 |
+
x="{x_rel}",
|
| 860 |
+
y="{y_rel}",
|
| 861 |
+
scatter_kws={{"alpha": 0.7, "s": 60}},
|
| 862 |
+
line_kws={{"linewidth": 2}},
|
| 863 |
+
ax=ax,
|
| 864 |
+
)
|
| 865 |
+
ax.set_title("Regression: {y_rel} vs {x_rel}")
|
| 866 |
+
plt.show()"""
|
| 867 |
+
description = "Relationship pattern: how two numeric variables move together."
|
| 868 |
+
|
| 869 |
+
# ------- Category -------
|
| 870 |
+
elif family == "Category" and categorical_cols_all and cat_var is not None:
|
| 871 |
+
fig_seaborn, ax = plt.subplots(figsize=(10, 5))
|
| 872 |
+
|
| 873 |
+
df_tmp = df.copy()
|
| 874 |
+
top_cats = (
|
| 875 |
+
df_tmp[cat_var]
|
| 876 |
+
.value_counts()
|
| 877 |
+
.head(order_top)
|
| 878 |
+
.index
|
| 879 |
+
)
|
| 880 |
+
df_tmp = df_tmp[df_tmp[cat_var].isin(top_cats)]
|
| 881 |
+
|
| 882 |
+
if cat_kind == "Count":
|
| 883 |
+
sns.countplot(
|
| 884 |
+
data=df_tmp,
|
| 885 |
+
y=cat_var,
|
| 886 |
+
order=top_cats,
|
| 887 |
+
ax=ax,
|
| 888 |
+
)
|
| 889 |
+
for container in ax.containers:
|
| 890 |
+
ax.bar_label(container, padding=3)
|
| 891 |
+
elif cat_kind == "Bar (mean)":
|
| 892 |
+
sns.barplot(
|
| 893 |
+
data=df_tmp,
|
| 894 |
+
y=cat_var,
|
| 895 |
+
x=num_cat,
|
| 896 |
+
order=top_cats,
|
| 897 |
+
ax=ax,
|
| 898 |
+
ci=95,
|
| 899 |
+
)
|
| 900 |
+
elif cat_kind == "Box":
|
| 901 |
+
sns.boxplot(
|
| 902 |
+
data=df_tmp,
|
| 903 |
+
y=cat_var,
|
| 904 |
+
x=num_cat,
|
| 905 |
+
order=top_cats,
|
| 906 |
+
ax=ax,
|
| 907 |
+
)
|
| 908 |
+
else: # Violin
|
| 909 |
+
sns.violinplot(
|
| 910 |
+
data=df_tmp,
|
| 911 |
+
y=cat_var,
|
| 912 |
+
x=num_cat,
|
| 913 |
+
order=top_cats,
|
| 914 |
+
ax=ax,
|
| 915 |
+
)
|
| 916 |
+
|
| 917 |
+
ax.set_title(
|
| 918 |
+
f"{cat_kind} for {cat_var}",
|
| 919 |
+
fontsize=13,
|
| 920 |
+
fontweight="bold",
|
| 921 |
+
)
|
| 922 |
+
apply_dark(fig_seaborn, DARK)
|
| 923 |
+
st.pyplot(fig_seaborn)
|
| 924 |
+
|
| 925 |
+
if cat_kind == "Count":
|
| 926 |
+
code_str = f"""fig, ax = plt.subplots(figsize=(10, 5))
|
| 927 |
+
sns.countplot(
|
| 928 |
+
data=df,
|
| 929 |
+
y="{cat_var}",
|
| 930 |
+
ax=ax,
|
| 931 |
+
)
|
| 932 |
+
ax.set_title("Count for {cat_var}")
|
| 933 |
+
plt.show()"""
|
| 934 |
+
elif cat_kind == "Bar (mean)":
|
| 935 |
+
code_str = f"""fig, ax = plt.subplots(figsize=(10, 5))
|
| 936 |
+
sns.barplot(
|
| 937 |
+
data=df,
|
| 938 |
+
y="{cat_var}",
|
| 939 |
+
x="{num_cat}",
|
| 940 |
+
ci=95,
|
| 941 |
+
ax=ax,
|
| 942 |
+
)
|
| 943 |
+
ax.set_title("Mean {num_cat} by {cat_var}")
|
| 944 |
+
plt.show()"""
|
| 945 |
+
elif cat_kind == "Box":
|
| 946 |
+
code_str = f"""fig, ax = plt.subplots(figsize=(10, 5))
|
| 947 |
+
sns.boxplot(
|
| 948 |
+
data=df,
|
| 949 |
+
y="{cat_var}",
|
| 950 |
+
x="{num_cat}",
|
| 951 |
+
ax=ax,
|
| 952 |
+
)
|
| 953 |
+
ax.set_title("Box: {num_cat} by {cat_var}")
|
| 954 |
+
plt.show()"""
|
| 955 |
+
else:
|
| 956 |
+
code_str = f"""fig, ax = plt.subplots(figsize=(10, 5))
|
| 957 |
+
sns.violinplot(
|
| 958 |
+
data=df,
|
| 959 |
+
y="{cat_var}",
|
| 960 |
+
x="{num_cat}",
|
| 961 |
+
ax=ax,
|
| 962 |
+
)
|
| 963 |
+
ax.set_title("Violin: {num_cat} by {cat_var}")
|
| 964 |
+
plt.show()"""
|
| 965 |
+
description = "Category pattern: compare distributions or means across groups."
|
| 966 |
+
|
| 967 |
+
# ------- Matrix / Heatmap -------
|
| 968 |
+
elif family == "Matrix / Heatmap" and selected_hm:
|
| 969 |
+
corr = df[selected_hm].corr()
|
| 970 |
+
fig_seaborn, ax = plt.subplots(figsize=(7, 6))
|
| 971 |
+
sns.heatmap(
|
| 972 |
+
corr,
|
| 973 |
+
annot=annot_hm,
|
| 974 |
+
fmt=".2f",
|
| 975 |
+
cmap="vlag",
|
| 976 |
+
center=0 if center_zero else None,
|
| 977 |
+
square=True,
|
| 978 |
+
linewidths=1,
|
| 979 |
+
cbar_kws={"shrink": 0.8},
|
| 980 |
+
ax=ax,
|
| 981 |
+
)
|
| 982 |
+
ax.set_title("Correlation heatmap", fontsize=13, fontweight="bold")
|
| 983 |
+
apply_dark(fig_seaborn, DARK)
|
| 984 |
+
st.pyplot(fig_seaborn)
|
| 985 |
+
|
| 986 |
+
center_value = "0" if center_zero else "None"
|
| 987 |
+
code_str = f"""corr = df[{selected_hm}].corr()
|
| 988 |
+
fig, ax = plt.subplots(figsize=(7, 6))
|
| 989 |
+
sns.heatmap(
|
| 990 |
+
corr,
|
| 991 |
+
annot={annot_hm},
|
| 992 |
+
fmt=".2f",
|
| 993 |
+
cmap="vlag",
|
| 994 |
+
center={center_value},
|
| 995 |
+
square=True,
|
| 996 |
+
linewidths=1,
|
| 997 |
+
cbar_kws={{"shrink": 0.8}},
|
| 998 |
+
ax=ax,
|
| 999 |
+
)
|
| 1000 |
+
ax.set_title("Correlation heatmap")
|
| 1001 |
+
plt.show()"""
|
| 1002 |
+
description = "Matrix pattern: scan many pairwise relationships at once."
|
| 1003 |
+
|
| 1004 |
+
# ------- Multi-variable (pairplot) -------
|
| 1005 |
+
elif family == "Multi-variable" and multi_vars:
|
| 1006 |
+
sample_size = min(sample_n, len(df))
|
| 1007 |
+
cols_to_use = multi_vars + ([hue_multi] if hue_multi else [])
|
| 1008 |
+
df_sample = df[cols_to_use].dropna().sample(sample_size, random_state=42)
|
| 1009 |
+
|
| 1010 |
+
with st.spinner("Building pairplot..."):
|
| 1011 |
+
g = sns.pairplot(
|
| 1012 |
+
df_sample,
|
| 1013 |
+
vars=multi_vars,
|
| 1014 |
+
hue=hue_multi,
|
| 1015 |
+
corner=True,
|
| 1016 |
+
diag_kind="kde",
|
| 1017 |
+
plot_kws={"alpha": 0.6},
|
| 1018 |
+
diag_kws={"alpha": 0.7},
|
| 1019 |
+
)
|
| 1020 |
+
g.fig.suptitle("Pairplot", y=1.01, fontweight="bold")
|
| 1021 |
+
fig_seaborn = g.fig
|
| 1022 |
+
apply_dark(fig_seaborn, DARK)
|
| 1023 |
+
st.pyplot(fig_seaborn)
|
| 1024 |
+
|
| 1025 |
+
code_str = f"""sample = df[{multi_vars + ([hue_multi] if hue_multi else [])}].dropna().sample({sample_n}, random_state=42)
|
| 1026 |
+
g = sns.pairplot(
|
| 1027 |
+
sample,
|
| 1028 |
+
vars={multi_vars},
|
| 1029 |
+
hue={repr(hue_multi)},
|
| 1030 |
+
corner=True,
|
| 1031 |
+
diag_kind="kde",
|
| 1032 |
+
plot_kws={{"alpha": 0.6}},
|
| 1033 |
+
)
|
| 1034 |
+
g.fig.suptitle("Pairplot", y=1.01)
|
| 1035 |
+
plt.show()"""
|
| 1036 |
+
description = "Multi-variable view: every pair of variables in one grid."
|
| 1037 |
+
|
| 1038 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 1039 |
+
|
| 1040 |
+
st.markdown("### Code preview")
|
| 1041 |
+
if code_str:
|
| 1042 |
+
show_code_example(code_str, description)
|
| 1043 |
+
|
| 1044 |
+
if "fig_seaborn" in locals() and fig_seaborn is not None:
|
| 1045 |
+
if st.button("Save last Seaborn plot to gallery", key="sb_save_gallery"):
|
| 1046 |
+
save_to_gallery(fig_seaborn, f"Seaborn: {family}", "Seaborn builder plot")
|
| 1047 |
+
st.success("Saved to gallery.")
|
| 1048 |
+
|
| 1049 |
+
# ==================== TAB: MATPLOTLIB BUILDER ====================
|
| 1050 |
+
with tab_mpl:
|
| 1051 |
+
st.markdown("## Matplotlib builder")
|
| 1052 |
+
st.markdown(
|
| 1053 |
+
'<div class="info-box"><strong>Goal:</strong> Build Matplotlib plots with fine-grained control on axes and layouts.</div>',
|
| 1054 |
+
unsafe_allow_html=True,
|
| 1055 |
+
)
|
| 1056 |
+
|
| 1057 |
+
if df.empty:
|
| 1058 |
+
st.warning("No data loaded.")
|
| 1059 |
+
else:
|
| 1060 |
+
col_plot, col_ctrl = st.columns([7, 3])
|
| 1061 |
+
|
| 1062 |
+
with col_ctrl:
|
| 1063 |
+
st.markdown(
|
| 1064 |
+
"""
|
| 1065 |
+
<div class="control-panel">
|
| 1066 |
+
<div class="control-panel-header">PLOT SETUP</div>
|
| 1067 |
+
</div>
|
| 1068 |
+
""",
|
| 1069 |
+
unsafe_allow_html=True,
|
| 1070 |
+
)
|
| 1071 |
+
|
| 1072 |
+
mpl_type = st.selectbox(
|
| 1073 |
+
"Plot type",
|
| 1074 |
+
[
|
| 1075 |
+
"Line",
|
| 1076 |
+
"Scatter",
|
| 1077 |
+
"Bar",
|
| 1078 |
+
"Histogram",
|
| 1079 |
+
"Box",
|
| 1080 |
+
"Subplots overview",
|
| 1081 |
+
],
|
| 1082 |
+
key="mpl_type",
|
| 1083 |
+
)
|
| 1084 |
+
|
| 1085 |
+
code_mpl = ""
|
| 1086 |
+
fig_mpl = None
|
| 1087 |
+
|
| 1088 |
+
if mpl_type == "Line":
|
| 1089 |
+
x_line = st.selectbox(
|
| 1090 |
+
"X (numeric or index)",
|
| 1091 |
+
["index"] + numeric_cols_all,
|
| 1092 |
+
key="mpl_line_x",
|
| 1093 |
+
)
|
| 1094 |
+
y_line = st.selectbox(
|
| 1095 |
+
"Y (numeric)",
|
| 1096 |
+
numeric_cols_all,
|
| 1097 |
+
key="mpl_line_y",
|
| 1098 |
+
)
|
| 1099 |
+
marker = st.selectbox(
|
| 1100 |
+
"Marker",
|
| 1101 |
+
["o", "s", "None"],
|
| 1102 |
+
index=0,
|
| 1103 |
+
key="mpl_line_marker",
|
| 1104 |
+
)
|
| 1105 |
+
use_grid = st.checkbox(
|
| 1106 |
+
"Show grid",
|
| 1107 |
+
value=True,
|
| 1108 |
+
key="mpl_line_grid",
|
| 1109 |
+
)
|
| 1110 |
+
|
| 1111 |
+
elif mpl_type == "Scatter":
|
| 1112 |
+
if len(numeric_cols_all) < 2:
|
| 1113 |
+
st.error("Need at least two numeric columns for scatter.")
|
| 1114 |
+
x_sc = st.selectbox(
|
| 1115 |
+
"X (numeric)",
|
| 1116 |
+
numeric_cols_all,
|
| 1117 |
+
key="mpl_sc_x",
|
| 1118 |
+
)
|
| 1119 |
+
y_sc = st.selectbox(
|
| 1120 |
+
"Y (numeric)",
|
| 1121 |
+
[c for c in numeric_cols_all if c != x_sc],
|
| 1122 |
+
key="mpl_sc_y",
|
| 1123 |
+
)
|
| 1124 |
+
color_by = None
|
| 1125 |
+
if categorical_cols_all:
|
| 1126 |
+
use_color = st.checkbox(
|
| 1127 |
+
"Color by category",
|
| 1128 |
+
value=False,
|
| 1129 |
+
key="mpl_sc_use_color",
|
| 1130 |
+
)
|
| 1131 |
+
if use_color:
|
| 1132 |
+
color_by = st.selectbox(
|
| 1133 |
+
"Category",
|
| 1134 |
+
categorical_cols_all,
|
| 1135 |
+
key="mpl_sc_color_by",
|
| 1136 |
+
)
|
| 1137 |
+
alpha_sc = st.slider(
|
| 1138 |
+
"Point transparency",
|
| 1139 |
+
0.1,
|
| 1140 |
+
1.0,
|
| 1141 |
+
0.7,
|
| 1142 |
+
0.05,
|
| 1143 |
+
key="mpl_sc_alpha",
|
| 1144 |
+
)
|
| 1145 |
+
size_sc = st.slider(
|
| 1146 |
+
"Point size",
|
| 1147 |
+
20,
|
| 1148 |
+
200,
|
| 1149 |
+
70,
|
| 1150 |
+
key="mpl_sc_size",
|
| 1151 |
+
)
|
| 1152 |
+
|
| 1153 |
+
elif mpl_type == "Bar":
|
| 1154 |
+
cat_for_bar = None
|
| 1155 |
+
if categorical_cols_all:
|
| 1156 |
+
cat_for_bar = st.selectbox(
|
| 1157 |
+
"Category",
|
| 1158 |
+
categorical_cols_all,
|
| 1159 |
+
key="mpl_bar_cat",
|
| 1160 |
+
)
|
| 1161 |
+
else:
|
| 1162 |
+
st.error("Need a categorical column for bar plot.")
|
| 1163 |
+
num_for_bar = st.selectbox(
|
| 1164 |
+
"Value",
|
| 1165 |
+
numeric_cols_all,
|
| 1166 |
+
key="mpl_bar_num",
|
| 1167 |
+
)
|
| 1168 |
+
agg_bar = st.selectbox(
|
| 1169 |
+
"Aggregation",
|
| 1170 |
+
["mean", "sum", "count"],
|
| 1171 |
+
key="mpl_bar_agg",
|
| 1172 |
+
)
|
| 1173 |
+
horiz = st.checkbox(
|
| 1174 |
+
"Horizontal bars",
|
| 1175 |
+
value=True,
|
| 1176 |
+
key="mpl_bar_horiz",
|
| 1177 |
+
)
|
| 1178 |
+
|
| 1179 |
+
elif mpl_type == "Histogram":
|
| 1180 |
+
num_hist = st.selectbox(
|
| 1181 |
+
"Numeric column",
|
| 1182 |
+
numeric_cols_all,
|
| 1183 |
+
key="mpl_hist_num",
|
| 1184 |
+
)
|
| 1185 |
+
bins_hist = st.slider(
|
| 1186 |
+
"Bins",
|
| 1187 |
+
5,
|
| 1188 |
+
80,
|
| 1189 |
+
30,
|
| 1190 |
+
key="mpl_hist_bins",
|
| 1191 |
+
)
|
| 1192 |
+
density_hist = st.checkbox(
|
| 1193 |
+
"Show density instead of counts",
|
| 1194 |
+
value=False,
|
| 1195 |
+
key="mpl_hist_density",
|
| 1196 |
+
)
|
| 1197 |
+
|
| 1198 |
+
elif mpl_type == "Box":
|
| 1199 |
+
nums_box = st.multiselect(
|
| 1200 |
+
"Numeric columns",
|
| 1201 |
+
numeric_cols_all,
|
| 1202 |
+
default=numeric_cols_all[: min(4, len(numeric_cols_all))],
|
| 1203 |
+
key="mpl_box_nums",
|
| 1204 |
+
)
|
| 1205 |
+
|
| 1206 |
+
else: # Subplots overview
|
| 1207 |
+
nums_over = st.multiselect(
|
| 1208 |
+
"Numeric columns",
|
| 1209 |
+
numeric_cols_all,
|
| 1210 |
+
default=numeric_cols_all[: min(3, len(numeric_cols_all))],
|
| 1211 |
+
key="mpl_over_nums",
|
| 1212 |
+
)
|
| 1213 |
+
use_kde = st.checkbox(
|
| 1214 |
+
"Overlay KDE on histograms",
|
| 1215 |
+
value=True,
|
| 1216 |
+
key="mpl_over_kde",
|
| 1217 |
+
)
|
| 1218 |
+
|
| 1219 |
+
with col_plot:
|
| 1220 |
+
st.markdown('<div class="plot-container">', unsafe_allow_html=True)
|
| 1221 |
+
|
| 1222 |
+
if mpl_type == "Line":
|
| 1223 |
+
if not numeric_cols_all:
|
| 1224 |
+
st.error("No numeric columns for line plot.")
|
| 1225 |
+
else:
|
| 1226 |
+
if x_line == "index":
|
| 1227 |
+
x_vals = np.arange(len(df))
|
| 1228 |
+
x_label = "Index"
|
| 1229 |
+
else:
|
| 1230 |
+
x_vals = df[x_line].values
|
| 1231 |
+
x_label = x_line
|
| 1232 |
+
y_vals = df[y_line].values
|
| 1233 |
+
|
| 1234 |
+
fig_mpl, ax = plt.subplots(figsize=(10, 5))
|
| 1235 |
+
line_marker = None if marker == "None" else marker
|
| 1236 |
+
ax.plot(x_vals, y_vals, marker=line_marker, lw=2)
|
| 1237 |
+
ax.set_title(f"Line: {y_line} over {x_label}", fontsize=13, fontweight="bold")
|
| 1238 |
+
ax.set_xlabel(x_label)
|
| 1239 |
+
ax.set_ylabel(y_line)
|
| 1240 |
+
if use_grid:
|
| 1241 |
+
ax.grid(alpha=0.3)
|
| 1242 |
+
apply_dark(fig_mpl, DARK)
|
| 1243 |
+
st.pyplot(fig_mpl)
|
| 1244 |
+
|
| 1245 |
+
code_mpl = f"""fig, ax = plt.subplots(figsize=(10, 5))
|
| 1246 |
+
ax.plot(
|
| 1247 |
+
{ 'np.arange(len(df))' if x_line == "index" else f'df["{x_line}"]' },
|
| 1248 |
+
df["{y_line}"],
|
| 1249 |
+
marker={'None' if marker == "None" else repr(marker)},
|
| 1250 |
+
lw=2,
|
| 1251 |
+
)
|
| 1252 |
+
ax.set_title("Line: {y_line} over {x_label}")
|
| 1253 |
+
ax.set_xlabel("{x_label}")
|
| 1254 |
+
ax.set_ylabel("{y_line}")
|
| 1255 |
+
ax.grid(alpha=0.3)
|
| 1256 |
+
plt.show()"""
|
| 1257 |
+
|
| 1258 |
+
elif mpl_type == "Scatter":
|
| 1259 |
+
if len(numeric_cols_all) < 2:
|
| 1260 |
+
st.error("No numeric columns for scatter plot.")
|
| 1261 |
+
else:
|
| 1262 |
+
fig_mpl, ax = plt.subplots(figsize=(10, 5))
|
| 1263 |
+
if color_by:
|
| 1264 |
+
unique_vals = df[color_by].dropna().unique()
|
| 1265 |
+
cmap = plt.get_cmap("tab10")
|
| 1266 |
+
for idx, val in enumerate(unique_vals):
|
| 1267 |
+
mask = df[color_by] == val
|
| 1268 |
+
ax.scatter(
|
| 1269 |
+
df.loc[mask, x_sc],
|
| 1270 |
+
df.loc[mask, y_sc],
|
| 1271 |
+
alpha=alpha_sc,
|
| 1272 |
+
s=size_sc,
|
| 1273 |
+
label=str(val),
|
| 1274 |
+
color=cmap(idx % 10),
|
| 1275 |
+
)
|
| 1276 |
+
ax.legend(title=color_by)
|
| 1277 |
+
else:
|
| 1278 |
+
ax.scatter(
|
| 1279 |
+
df[x_sc],
|
| 1280 |
+
df[y_sc],
|
| 1281 |
+
alpha=alpha_sc,
|
| 1282 |
+
s=size_sc,
|
| 1283 |
+
)
|
| 1284 |
+
ax.set_title(f"Scatter: {y_sc} vs {x_sc}", fontsize=13, fontweight="bold")
|
| 1285 |
+
ax.set_xlabel(x_sc)
|
| 1286 |
+
ax.set_ylabel(y_sc)
|
| 1287 |
+
ax.grid(alpha=0.3)
|
| 1288 |
+
apply_dark(fig_mpl, DARK)
|
| 1289 |
+
st.pyplot(fig_mpl)
|
| 1290 |
+
|
| 1291 |
+
code_mpl = f"""fig, ax = plt.subplots(figsize=(10, 5))
|
| 1292 |
+
ax.scatter(
|
| 1293 |
+
df["{x_sc}"],
|
| 1294 |
+
df["{y_sc}"],
|
| 1295 |
+
alpha={alpha_sc},
|
| 1296 |
+
s={size_sc},
|
| 1297 |
+
)
|
| 1298 |
+
ax.set_title("Scatter: {y_sc} vs {x_sc}")
|
| 1299 |
+
ax.set_xlabel("{x_sc}")
|
| 1300 |
+
ax.set_ylabel("{y_sc}")
|
| 1301 |
+
ax.grid(alpha=0.3)
|
| 1302 |
+
plt.show()"""
|
| 1303 |
+
|
| 1304 |
+
elif mpl_type == "Bar":
|
| 1305 |
+
if cat_for_bar is None:
|
| 1306 |
+
st.error("Select a categorical column for the bar plot.")
|
| 1307 |
+
else:
|
| 1308 |
+
grouped = getattr(df.groupby(cat_for_bar)[num_for_bar], agg_bar)()
|
| 1309 |
+
grouped = grouped.sort_values(ascending=True)
|
| 1310 |
+
fig_mpl, ax = plt.subplots(figsize=(9, 5))
|
| 1311 |
+
if horiz:
|
| 1312 |
+
ax.barh(grouped.index, grouped.values)
|
| 1313 |
+
ax.set_xlabel(num_for_bar)
|
| 1314 |
+
ax.set_ylabel(cat_for_bar)
|
| 1315 |
+
else:
|
| 1316 |
+
ax.bar(grouped.index, grouped.values)
|
| 1317 |
+
ax.set_ylabel(num_for_bar)
|
| 1318 |
+
ax.set_xlabel(cat_for_bar)
|
| 1319 |
+
plt.setp(ax.get_xticklabels(), rotation=45, ha="right")
|
| 1320 |
+
ax.set_title(f"{agg_bar} of {num_for_bar} by {cat_for_bar}", fontsize=13, fontweight="bold")
|
| 1321 |
+
ax.grid(axis="x" if horiz else "y", alpha=0.3)
|
| 1322 |
+
apply_dark(fig_mpl, DARK)
|
| 1323 |
+
st.pyplot(fig_mpl)
|
| 1324 |
+
|
| 1325 |
+
code_mpl = f"""grouped = df.groupby("{cat_for_bar}")["{num_for_bar}"].{agg_bar}().sort_values()
|
| 1326 |
+
fig, ax = plt.subplots(figsize=(9, 5))
|
| 1327 |
+
ax.barh(grouped.index, grouped.values) if {horiz} else ax.bar(grouped.index, grouped.values)
|
| 1328 |
+
ax.set_title("{agg_bar} of {num_for_bar} by {cat_for_bar}")
|
| 1329 |
+
plt.show()"""
|
| 1330 |
+
|
| 1331 |
+
elif mpl_type == "Histogram":
|
| 1332 |
+
fig_mpl, ax = plt.subplots(figsize=(9, 5))
|
| 1333 |
+
ax.hist(
|
| 1334 |
+
df[num_hist].dropna().values,
|
| 1335 |
+
bins=bins_hist,
|
| 1336 |
+
density=density_hist,
|
| 1337 |
+
alpha=0.85,
|
| 1338 |
+
)
|
| 1339 |
+
ax.set_title(f"Histogram of {num_hist}", fontsize=13, fontweight="bold")
|
| 1340 |
+
ax.set_xlabel(num_hist)
|
| 1341 |
+
ax.set_ylabel("Density" if density_hist else "Count")
|
| 1342 |
+
ax.grid(alpha=0.3)
|
| 1343 |
+
apply_dark(fig_mpl, DARK)
|
| 1344 |
+
st.pyplot(fig_mpl)
|
| 1345 |
+
|
| 1346 |
+
code_mpl = f"""fig, ax = plt.subplots(figsize=(9, 5))
|
| 1347 |
+
ax.hist(
|
| 1348 |
+
df["{num_hist}"].dropna().values,
|
| 1349 |
+
bins={bins_hist},
|
| 1350 |
+
density={density_hist},
|
| 1351 |
+
alpha=0.85,
|
| 1352 |
+
)
|
| 1353 |
+
ax.set_title("Histogram of {num_hist}")
|
| 1354 |
+
ax.set_xlabel("{num_hist}")
|
| 1355 |
+
ax.set_ylabel("{'Density' if density_hist else 'Count'}")
|
| 1356 |
+
ax.grid(alpha=0.3)
|
| 1357 |
+
plt.show()"""
|
| 1358 |
+
|
| 1359 |
+
elif mpl_type == "Box":
|
| 1360 |
+
if not nums_box:
|
| 1361 |
+
st.warning("Select at least one numeric column.")
|
| 1362 |
+
else:
|
| 1363 |
+
fig_mpl, ax = plt.subplots(figsize=(10, 5))
|
| 1364 |
+
ax.boxplot(
|
| 1365 |
+
[df[c].dropna().values for c in nums_box],
|
| 1366 |
+
labels=nums_box,
|
| 1367 |
+
vert=True,
|
| 1368 |
+
)
|
| 1369 |
+
ax.set_title("Box plots", fontsize=13, fontweight="bold")
|
| 1370 |
+
ax.grid(alpha=0.3)
|
| 1371 |
+
apply_dark(fig_mpl, DARK)
|
| 1372 |
+
st.pyplot(fig_mpl)
|
| 1373 |
+
|
| 1374 |
+
code_mpl = f"""fig, ax = plt.subplots(figsize=(10, 5))
|
| 1375 |
+
ax.boxplot(
|
| 1376 |
+
[{', '.join([f'df["{c}"].dropna().values' for c in nums_box])}],
|
| 1377 |
+
labels={nums_box},
|
| 1378 |
+
)
|
| 1379 |
+
ax.set_title("Box plots")
|
| 1380 |
+
ax.grid(alpha=0.3)
|
| 1381 |
+
plt.show()"""
|
| 1382 |
+
|
| 1383 |
+
else: # Subplots overview
|
| 1384 |
+
if not nums_over:
|
| 1385 |
+
st.warning("Select at least one numeric column.")
|
| 1386 |
+
else:
|
| 1387 |
+
k = len(nums_over)
|
| 1388 |
+
fig_mpl, axes = plt.subplots(
|
| 1389 |
+
1,
|
| 1390 |
+
k,
|
| 1391 |
+
figsize=(4 * k, 4),
|
| 1392 |
+
squeeze=False,
|
| 1393 |
+
)
|
| 1394 |
+
for idx, col_name in enumerate(nums_over):
|
| 1395 |
+
ax = axes[0, idx]
|
| 1396 |
+
data = df[col_name].dropna().values
|
| 1397 |
+
ax.hist(data, bins=30, alpha=0.8, density=True)
|
| 1398 |
+
if use_kde and len(data) > 10:
|
| 1399 |
+
x_vals = np.linspace(data.min(), data.max(), 200)
|
| 1400 |
+
kde = stats.gaussian_kde(data)
|
| 1401 |
+
ax.plot(x_vals, kde(x_vals), lw=2)
|
| 1402 |
+
ax.set_title(col_name)
|
| 1403 |
+
ax.grid(alpha=0.3)
|
| 1404 |
+
fig_mpl.suptitle("Numeric overview", fontsize=13, fontweight="bold")
|
| 1405 |
+
plt.tight_layout()
|
| 1406 |
+
apply_dark(fig_mpl, DARK)
|
| 1407 |
+
st.pyplot(fig_mpl)
|
| 1408 |
+
|
| 1409 |
+
code_mpl = """cols = {cols}
|
| 1410 |
+
fig, axes = plt.subplots(1, len(cols), figsize=(4 * len(cols), 4), squeeze=False)
|
| 1411 |
+
for idx, name in enumerate(cols):
|
| 1412 |
+
ax = axes[0, idx]
|
| 1413 |
+
data = df[name].dropna().values
|
| 1414 |
+
ax.hist(data, bins=30, density=True, alpha=0.8)
|
| 1415 |
+
ax.set_title(name)
|
| 1416 |
+
ax.grid(alpha=0.3)
|
| 1417 |
+
plt.tight_layout()
|
| 1418 |
+
plt.show()""".format(
|
| 1419 |
+
cols=nums_over
|
| 1420 |
+
)
|
| 1421 |
+
|
| 1422 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 1423 |
+
|
| 1424 |
+
st.markdown("### Code preview")
|
| 1425 |
+
if code_mpl:
|
| 1426 |
+
show_code_example(code_mpl, "Matplotlib commands that reproduce the current plot.")
|
| 1427 |
+
|
| 1428 |
+
if fig_mpl is not None:
|
| 1429 |
+
if st.button("Save last Matplotlib plot to gallery", key="mpl_save_gallery"):
|
| 1430 |
+
save_to_gallery(fig_mpl, f"Matplotlib: {mpl_type}", "Matplotlib builder plot")
|
| 1431 |
+
st.success("Saved to gallery.")
|
| 1432 |
+
|
| 1433 |
+
# ==================== TAB: COMPARE ====================
|
| 1434 |
+
with tab_compare:
|
| 1435 |
+
st.markdown("## Compare Seaborn and Matplotlib")
|
| 1436 |
+
st.markdown(
|
| 1437 |
+
'<div class="info-box"><strong>Goal:</strong> See the same idea expressed once with Seaborn and once with Matplotlib.</div>',
|
| 1438 |
+
unsafe_allow_html=True,
|
| 1439 |
+
)
|
| 1440 |
+
|
| 1441 |
+
if df.empty or not numeric_cols_all:
|
| 1442 |
+
st.warning("Need at least one numeric column in the dataset.")
|
| 1443 |
+
else:
|
| 1444 |
+
compare_kind = st.selectbox(
|
| 1445 |
+
"Comparison pattern",
|
| 1446 |
+
[
|
| 1447 |
+
"Distribution (histogram + KDE)",
|
| 1448 |
+
"Relationship (scatter)",
|
| 1449 |
+
],
|
| 1450 |
+
key="cmp_kind",
|
| 1451 |
+
)
|
| 1452 |
+
|
| 1453 |
+
if compare_kind == "Distribution (histogram + KDE)":
|
| 1454 |
+
num_cmp = st.selectbox(
|
| 1455 |
+
"Numeric column",
|
| 1456 |
+
numeric_cols_all,
|
| 1457 |
+
key="cmp_dist_num",
|
| 1458 |
+
)
|
| 1459 |
+
hue_cmp = None
|
| 1460 |
+
if categorical_cols_all:
|
| 1461 |
+
use_hue_cmp = st.checkbox(
|
| 1462 |
+
"Color by category (Seaborn only)",
|
| 1463 |
+
value=False,
|
| 1464 |
+
key="cmp_dist_use_hue",
|
| 1465 |
+
)
|
| 1466 |
+
if use_hue_cmp:
|
| 1467 |
+
hue_cmp = st.selectbox(
|
| 1468 |
+
"Hue",
|
| 1469 |
+
categorical_cols_all,
|
| 1470 |
+
key="cmp_dist_hue",
|
| 1471 |
+
)
|
| 1472 |
+
|
| 1473 |
+
col_s, col_m = st.columns(2)
|
| 1474 |
+
|
| 1475 |
+
with col_s:
|
| 1476 |
+
st.markdown("### Seaborn view")
|
| 1477 |
+
fig_s, ax_s = plt.subplots(figsize=(7, 4))
|
| 1478 |
+
sns.histplot(
|
| 1479 |
+
data=df,
|
| 1480 |
+
x=num_cmp,
|
| 1481 |
+
hue=hue_cmp,
|
| 1482 |
+
kde=True,
|
| 1483 |
+
bins=30,
|
| 1484 |
+
ax=ax_s,
|
| 1485 |
+
)
|
| 1486 |
+
ax_s.set_title("Seaborn: histogram + KDE", fontsize=12, fontweight="bold")
|
| 1487 |
+
apply_dark(fig_s, DARK)
|
| 1488 |
+
st.pyplot(fig_s)
|
| 1489 |
+
|
| 1490 |
+
with col_m:
|
| 1491 |
+
st.markdown("### Matplotlib view")
|
| 1492 |
+
fig_m, ax_m = plt.subplots(figsize=(7, 4))
|
| 1493 |
+
values = df[num_cmp].dropna().values
|
| 1494 |
+
ax_m.hist(values, bins=30, alpha=0.85, density=True)
|
| 1495 |
+
x_vals = np.linspace(values.min(), values.max(), 200)
|
| 1496 |
+
kde = stats.gaussian_kde(values)
|
| 1497 |
+
ax_m.plot(x_vals, kde(x_vals), lw=2)
|
| 1498 |
+
ax_m.set_title("Matplotlib: histogram + KDE", fontsize=12, fontweight="bold")
|
| 1499 |
+
ax_m.set_xlabel(num_cmp)
|
| 1500 |
+
ax_m.set_ylabel("Density")
|
| 1501 |
+
ax_m.grid(alpha=0.3)
|
| 1502 |
+
apply_dark(fig_m, DARK)
|
| 1503 |
+
st.pyplot(fig_m)
|
| 1504 |
+
|
| 1505 |
+
if st.button("Save Seaborn comparison plot to gallery", key="cmp_dist_save"):
|
| 1506 |
+
save_to_gallery(fig_s, "Compare: Distribution", "Seaborn vs Matplotlib distribution")
|
| 1507 |
+
st.success("Saved Seaborn figure to gallery.")
|
| 1508 |
+
|
| 1509 |
+
else: # Relationship (scatter)
|
| 1510 |
+
if len(numeric_cols_all) < 2:
|
| 1511 |
+
st.warning("Need at least two numeric columns.")
|
| 1512 |
+
else:
|
| 1513 |
+
x_cmp = st.selectbox(
|
| 1514 |
+
"X",
|
| 1515 |
+
numeric_cols_all,
|
| 1516 |
+
key="cmp_rel_x",
|
| 1517 |
+
)
|
| 1518 |
+
y_cmp = st.selectbox(
|
| 1519 |
+
"Y",
|
| 1520 |
+
[c for c in numeric_cols_all if c != x_cmp],
|
| 1521 |
+
key="cmp_rel_y",
|
| 1522 |
+
)
|
| 1523 |
+
hue_cmp_rel = None
|
| 1524 |
+
if categorical_cols_all:
|
| 1525 |
+
use_hue_cmp_rel = st.checkbox(
|
| 1526 |
+
"Color by category (Seaborn only)",
|
| 1527 |
+
value=False,
|
| 1528 |
+
key="cmp_rel_use_hue",
|
| 1529 |
+
)
|
| 1530 |
+
if use_hue_cmp_rel:
|
| 1531 |
+
hue_cmp_rel = st.selectbox(
|
| 1532 |
+
"Hue",
|
| 1533 |
+
categorical_cols_all,
|
| 1534 |
+
key="cmp_rel_hue",
|
| 1535 |
+
)
|
| 1536 |
+
|
| 1537 |
+
col_s2, col_m2 = st.columns(2)
|
| 1538 |
+
|
| 1539 |
+
with col_s2:
|
| 1540 |
+
st.markdown("### Seaborn view")
|
| 1541 |
+
fig_s2, ax_s2 = plt.subplots(figsize=(7, 4))
|
| 1542 |
+
sns.scatterplot(
|
| 1543 |
+
data=df,
|
| 1544 |
+
x=x_cmp,
|
| 1545 |
+
y=y_cmp,
|
| 1546 |
+
hue=hue_cmp_rel,
|
| 1547 |
+
alpha=0.7,
|
| 1548 |
+
s=70,
|
| 1549 |
+
ax=ax_s2,
|
| 1550 |
+
)
|
| 1551 |
+
ax_s2.set_title("Seaborn: scatterplot", fontsize=12, fontweight="bold")
|
| 1552 |
+
apply_dark(fig_s2, DARK)
|
| 1553 |
+
st.pyplot(fig_s2)
|
| 1554 |
+
|
| 1555 |
+
with col_m2:
|
| 1556 |
+
st.markdown("### Matplotlib view")
|
| 1557 |
+
fig_m2, ax_m2 = plt.subplots(figsize=(7, 4))
|
| 1558 |
+
ax_m2.scatter(df[x_cmp], df[y_cmp], alpha=0.7)
|
| 1559 |
+
ax_m2.set_title("Matplotlib: scatter", fontsize=12, fontweight="bold")
|
| 1560 |
+
ax_m2.set_xlabel(x_cmp)
|
| 1561 |
+
ax_m2.set_ylabel(y_cmp)
|
| 1562 |
+
ax_m2.grid(alpha=0.3)
|
| 1563 |
+
apply_dark(fig_m2, DARK)
|
| 1564 |
+
st.pyplot(fig_m2)
|
| 1565 |
+
|
| 1566 |
+
if st.button("Save Seaborn comparison plot to gallery", key="cmp_rel_save"):
|
| 1567 |
+
save_to_gallery(fig_s2, "Compare: Relationship", "Seaborn vs Matplotlib scatter")
|
| 1568 |
+
st.success("Saved Seaborn figure to gallery.")
|
| 1569 |
+
|
| 1570 |
+
# ==================== TAB: GALLERY ====================
|
| 1571 |
+
with tab_gallery:
|
| 1572 |
+
st.markdown("## Gallery")
|
| 1573 |
+
|
| 1574 |
+
if not st.session_state["gallery"]:
|
| 1575 |
+
st.info("Gallery is empty. Build a plot in any tab and save it here.")
|
| 1576 |
+
st.markdown(
|
| 1577 |
+
"""
|
| 1578 |
+
**How this gallery works**
|
| 1579 |
+
|
| 1580 |
+
1. Create a visualization in one of the tabs
|
| 1581 |
+
2. Click the **Save to gallery** button
|
| 1582 |
+
3. Return here to review the saved visuals
|
| 1583 |
+
4. Download individual PNG files or a ZIP archive
|
| 1584 |
+
"""
|
| 1585 |
+
)
|
| 1586 |
+
else:
|
| 1587 |
+
st.success(f"{len(st.session_state['gallery'])} visualizations stored.")
|
| 1588 |
+
|
| 1589 |
+
col_zip, col_clear, _ = st.columns([2, 2, 1])
|
| 1590 |
+
|
| 1591 |
+
with col_zip:
|
| 1592 |
+
if st.button("Prepare ZIP archive", key="gal_zip_btn", use_container_width=True):
|
| 1593 |
+
zip_buf = io.BytesIO()
|
| 1594 |
+
with zipfile.ZipFile(zip_buf, "w", zipfile.ZIP_DEFLATED) as zf:
|
| 1595 |
+
for idx, item in enumerate(st.session_state["gallery"]):
|
| 1596 |
+
filename = f"{idx+1:02d}_{item['name'].replace(' ', '_')}.png"
|
| 1597 |
+
zf.writestr(filename, item["image"])
|
| 1598 |
+
|
| 1599 |
+
st.download_button(
|
| 1600 |
+
"Download ZIP",
|
| 1601 |
+
data=zip_buf.getvalue(),
|
| 1602 |
+
file_name=f"visual_lab_gallery_{datetime.now():%Y%m%d_%H%M%S}.zip",
|
| 1603 |
+
mime="application/zip",
|
| 1604 |
+
use_container_width=True,
|
| 1605 |
+
key="gal_zip_dl",
|
| 1606 |
+
)
|
| 1607 |
+
|
| 1608 |
+
with col_clear:
|
| 1609 |
+
if st.button("Clear gallery", key="gal_clear_btn", use_container_width=True):
|
| 1610 |
+
st.session_state["gallery"] = []
|
| 1611 |
+
st.rerun()
|
| 1612 |
+
|
| 1613 |
+
st.markdown("---")
|
| 1614 |
+
|
| 1615 |
+
cols_per_row = 2
|
| 1616 |
+
for i in range(0, len(st.session_state["gallery"]), cols_per_row):
|
| 1617 |
+
cols = st.columns(cols_per_row)
|
| 1618 |
+
for j, c in enumerate(cols):
|
| 1619 |
+
item_idx = i + j
|
| 1620 |
+
if item_idx < len(st.session_state["gallery"]):
|
| 1621 |
+
item = st.session_state["gallery"][item_idx]
|
| 1622 |
+
with c:
|
| 1623 |
+
st.markdown('<div class="plot-container">', unsafe_allow_html=True)
|
| 1624 |
+
st.image(item["image"], use_container_width=True)
|
| 1625 |
+
st.markdown(f"**{item['name']}**")
|
| 1626 |
+
st.caption(item["description"])
|
| 1627 |
+
st.caption(
|
| 1628 |
+
f"Saved at {item['timestamp'].strftime('%Y-%m-%d %H:%M')}"
|
| 1629 |
+
)
|
| 1630 |
+
st.download_button(
|
| 1631 |
+
"Download PNG",
|
| 1632 |
+
data=item["image"],
|
| 1633 |
+
file_name=f"{item['name'].replace(' ', '_')}.png",
|
| 1634 |
+
mime="image/png",
|
| 1635 |
+
key=f"gal_dl_{item_idx}",
|
| 1636 |
+
use_container_width=True,
|
| 1637 |
+
)
|
| 1638 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 1639 |
+
|
| 1640 |
+
# ==================== FOOTER ====================
|
| 1641 |
+
st.markdown("---")
|
| 1642 |
+
st.markdown("### Quick reference")
|
| 1643 |
+
|
| 1644 |
+
col_f1, col_f2, col_f3 = st.columns(3)
|
| 1645 |
+
with col_f1:
|
| 1646 |
+
st.markdown(
|
| 1647 |
+
"""
|
| 1648 |
+
**Distribution**
|
| 1649 |
+
- Histogram / KDE / ECDF
|
| 1650 |
+
- Box / Violin
|
| 1651 |
+
"""
|
| 1652 |
+
)
|
| 1653 |
+
with col_f2:
|
| 1654 |
+
st.markdown(
|
| 1655 |
+
"""
|
| 1656 |
+
**Relationships & groups**
|
| 1657 |
+
- Scatter / Regression / Line
|
| 1658 |
+
- Category summaries
|
| 1659 |
+
"""
|
| 1660 |
+
)
|
| 1661 |
+
with col_f3:
|
| 1662 |
+
st.markdown(
|
| 1663 |
+
"""
|
| 1664 |
+
**Matrix & multi-view**
|
| 1665 |
+
- Correlation heatmaps
|
| 1666 |
+
- Pairplot grids
|
| 1667 |
+
"""
|
| 1668 |
+
)
|
assets/compare-hist-kde-tips.png
ADDED
|
Git LFS Details
|
assets/compare-scatter-flights.png
ADDED
|
Git LFS Details
|
assets/matplotlib-iris-sepal-length-hist.png
ADDED
|
Git LFS Details
|
assets/matplotlib-iris-sepal-length-line.png
ADDED
|
Git LFS Details
|
assets/seaborn-tips-total-bill-hist-sex.png
ADDED
|
Git LFS Details
|
assets/seaborn-tips-total-bill-vs-tip-scatter.png
ADDED
|
Git LFS Details
|
requirements.txt
CHANGED
|
@@ -1,3 +1,6 @@
|
|
| 1 |
-
|
| 2 |
-
pandas
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit>=1.35
|
| 2 |
+
pandas>=2.0
|
| 3 |
+
numpy>=1.24
|
| 4 |
+
matplotlib>=3.7
|
| 5 |
+
seaborn>=0.13
|
| 6 |
+
scipy>=1.10
|