Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| import spaces | |
| from PIL import Image | |
| from diffusers import QwenImageEditPipeline | |
| import os | |
| import base64 | |
| import json | |
| # Set static paths for serving logo | |
| gr.set_static_paths(paths=["./"]) | |
| SYSTEM_PROMPT = ''' | |
| # Edit Instruction Rewriter | |
| You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited. | |
| Please strictly follow the rewriting rules below: | |
| ## 1. General Principles | |
| - Keep the rewritten prompt **concise**. Avoid overly long sentences and reduce unnecessary descriptive language. | |
| - If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary. | |
| - Keep the core intention of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility. | |
| - All added objects or modifications must align with the logic and style of the edited input image’s overall scene. | |
| ## 2. Task Type Handling Rules | |
| ### 1. Add, Delete, Replace Tasks | |
| - If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar. | |
| - If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example: | |
| > Original: "Add an animal" | |
| > Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera" | |
| - Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid. | |
| - For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X. | |
| ### 2. Text Editing Tasks | |
| - All text content must be enclosed in English double quotes `" "`. Do not translate or alter the original language of the text, and do not change the capitalization. | |
| - **For text replacement tasks, always use the fixed template:** | |
| - `Replace "xx" to "yy"`. | |
| - `Replace the xx bounding box to "yy"`. | |
| - If the user does not specify text content, infer and add concise text based on the instruction and the input image’s context. For example: | |
| > Original: "Add a line of text" (poster) | |
| > Rewritten: "Add text \"LIMITED EDITION\" at the top center with slight shadow" | |
| - Specify text position, color, and layout in a concise way. | |
| ### 3. Human Editing Tasks | |
| - Maintain the person’s core visual consistency (ethnicity, gender, age, hairstyle, expression, outfit, etc.). | |
| - If modifying appearance (e.g., clothes, hairstyle), ensure the new element is consistent with the original style. | |
| - **For expression changes, they must be natural and subtle, never exaggerated.** | |
| - If deletion is not specifically emphasized, the most important subject in the original image (e.g., a person, an animal) should be preserved. | |
| - For background change tasks, emphasize maintaining subject consistency at first. | |
| - Example: | |
| > Original: "Change the person’s hat" | |
| > Rewritten: "Replace the man’s hat with a dark brown beret; keep smile, short hair, and gray jacket unchanged" | |
| ### 4. Style Transformation or Enhancement Tasks | |
| - If a style is specified, describe it concisely with key visual traits. For example: | |
| > Original: "Disco style" | |
| > Rewritten: "1970s disco: flashing lights, disco ball, mirrored walls, colorful tones" | |
| - If the instruction says "use reference style" or "keep current style," analyze the input image, extract main features (color, composition, texture, lighting, art style), and integrate them concisely. | |
| - **For coloring tasks, including restoring old photos, always use the fixed template:** "Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration" | |
| - If there are other changes, place the style description at the end. | |
| ## 3. Rationality and Logic Checks | |
| - Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" should be logically corrected. | |
| - Add missing key information: if position is unspecified, choose a reasonable area based on composition (near subject, empty space, center/edges). | |
| # Output Format Example | |
| ```json | |
| { | |
| "Rewritten": "..." | |
| } | |
| ''' | |
| def polish_prompt(prompt, img): | |
| original_prompt = prompt | |
| prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:" | |
| success=False | |
| max_retries = 3 | |
| retry_count = 0 | |
| while not success and retry_count < max_retries: | |
| try: | |
| result = api(prompt, [img]) | |
| # print(f"Result: {result}") | |
| # print(f"Polished Prompt: {polished_prompt}") | |
| if isinstance(result, str): | |
| result = result.replace('```json','') | |
| result = result.replace('```','') | |
| result = json.loads(result) | |
| else: | |
| result = json.loads(result) | |
| polished_prompt = result['Rewritten'] | |
| polished_prompt = polished_prompt.strip() | |
| polished_prompt = polished_prompt.replace("\n", " ") | |
| success = True | |
| except Exception as e: | |
| print(f"[Warning] Error during API call (attempt {retry_count + 1}): {e}") | |
| retry_count += 1 | |
| if not success: | |
| print(f"[Warning] Failed to polish prompt after {max_retries} attempts, using original prompt") | |
| return original_prompt | |
| return polished_prompt | |
| def encode_image(pil_image): | |
| import io | |
| buffered = io.BytesIO() | |
| pil_image.save(buffered, format="PNG") | |
| return base64.b64encode(buffered.getvalue()).decode("utf-8") | |
| def api(prompt, img_list, model="qwen-vl-max-latest", kwargs={}): | |
| import dashscope | |
| api_key = os.environ.get('DASH_API_KEY') | |
| if not api_key: | |
| raise EnvironmentError("DASH_API_KEY is not set") | |
| assert model in ["qwen-vl-max-latest"], f"Not implemented model {model}" | |
| sys_promot = "you are a helpful assistant, you should provide useful answers to users." | |
| messages = [ | |
| {"role": "system", "content": sys_promot}, | |
| {"role": "user", "content": []}] | |
| for img in img_list: | |
| messages[1]["content"].append( | |
| {"image": f"data:image/png;base64,{encode_image(img)}"}) | |
| messages[1]["content"].append({"text": f"{prompt}"}) | |
| response_format = kwargs.get('response_format', None) | |
| response = dashscope.MultiModalConversation.call( | |
| api_key=api_key, | |
| model=model, # For example, use qwen-plus here. You can change the model name as needed. Model list: https://help.aliyun.com/zh/model-studio/getting-started/models | |
| messages=messages, | |
| result_format='message', | |
| response_format=response_format, | |
| ) | |
| if response.status_code == 200: | |
| return response.output.choices[0].message.content[0]['text'] | |
| else: | |
| raise Exception(f'Failed to post: {response}') | |
| # --- Model Loading --- | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Load the model pipeline | |
| pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=dtype).to(device) | |
| # --- UI Constants and Helpers --- | |
| MAX_SEED = np.iinfo(np.int32).max | |
| # --- Main Inference Function (with hardcoded negative prompt) --- | |
| def infer( | |
| image, | |
| prompt, | |
| seed=0, | |
| randomize_seed=True, | |
| true_guidance_scale=1.0, | |
| num_inference_steps=50, | |
| rewrite_prompt=True, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| """ | |
| Generates an image using the local Qwen-Image diffusers pipeline. | |
| """ | |
| # Hardcode the negative prompt as requested | |
| negative_prompt = " " | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| # Set up the generator for reproducibility | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| # Korean prompts will be automatically translated via polish_prompt() function | |
| print(f"Calling pipeline with prompt: '{prompt}'") | |
| print(f"Negative Prompt: '{negative_prompt}'") | |
| print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}") | |
| try: | |
| if rewrite_prompt: | |
| prompt = polish_prompt(prompt, image) | |
| print(f"Rewritten Prompt: {prompt}") | |
| # Generate the image | |
| images = pipe( | |
| image, | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| true_cfg_scale=true_guidance_scale, | |
| num_images_per_prompt=1 | |
| ).images | |
| return images[0], seed | |
| except Exception as e: | |
| print(f"Error during inference: {e}") | |
| # Return the original image with error message | |
| return image, seed | |
| # --- Examples and UI Layout --- | |
| examples = [] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 1024px; | |
| } | |
| #edit_text{ | |
| margin-top: -62px !important | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.HTML('<h1 style="text-align: center; color: #6366f1; font-size: 3rem; font-weight: bold; margin: 2rem 0; font-family: system-ui, -apple-system, sans-serif; display: flex; align-items: center; justify-content: center; gap: 1rem;"><img src="https://huggingface.co/spaces/tchung1970/Qwen-Image-Edit/resolve/main/logo.png" alt="로고" style="height: 3rem; width: auto;"> 퀀 이미지 편집기</h1>') | |
| gr.Markdown("[더 알아보기](https://github.com/QwenLM/Qwen-Image)에서 Qwen-Image 시리즈에 대해 자세히 알아보세요. [Qwen Chat](https://chat.qwen.ai/)에서 체험하거나 [모델 다운로드](https://huggingface.co/Qwen/Qwen-Image-Edit)하여 ComfyUI나 diffusers로 로컬에서 실행해보세요.") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image( | |
| label="입력 이미지", | |
| show_label=False, | |
| type="pil", | |
| height=400, | |
| interactive=True, | |
| placeholder="이미지를 여기로 끌어다 놓으세요" | |
| ) | |
| result = gr.Image( | |
| label="결과", | |
| show_label=False, | |
| type="pil", | |
| format="png", | |
| height=400, | |
| interactive=False | |
| ) | |
| prompt = gr.Text( | |
| label="프롬프트", | |
| show_label=False, | |
| placeholder="편집 지시사항을 설명해주세요", | |
| container=False, | |
| ) | |
| with gr.Row(): | |
| run_button = gr.Button("편집!", variant="primary", size="lg", scale=1) | |
| with gr.Accordion("고급 설정", open=False): | |
| # Negative prompt UI element is removed here | |
| seed = gr.Slider( | |
| label="시드", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="시드 랜덤화", value=True) | |
| with gr.Row(): | |
| true_guidance_scale = gr.Slider( | |
| label="가이던스 스케일", | |
| minimum=1.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=4.0 | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="추론 단계 수", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=50, | |
| ) | |
| rewrite_prompt = gr.Checkbox(label="프롬프트 재작성", value=True) | |
| gr.Markdown("예시를 클릭하면 이미지와 한국어 프롬프트가 입력되며, 한국어 프롬프트는 '편집!' 버튼을 누를 때 자동으로 영어로 번역되어 AI가 처리합니다.") | |
| gr.Examples( | |
| label="예시", | |
| examples=[ | |
| ["neon_sign.png", "텍스트를 'COOL NEON SIGN HERE'으로 변경해주세요"], | |
| ["cat_sitting.jpg", "고양이가 전통 한국 한복을 입고 있는 모습으로 만들어 주세요"], | |
| ["pie.png", "사진 스타일을 빈티지 만화책 스타일로 바꿔주세요"]], | |
| inputs=[input_image, prompt], | |
| cache_examples=False, | |
| examples_per_page=3) | |
| # Force update timestamp | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| input_image, | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| true_guidance_scale, | |
| num_inference_steps, | |
| rewrite_prompt, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |