Spaces:
Runtime error
Runtime error
gamin
commited on
Commit
·
2c99f9b
1
Parent(s):
a2e0332
Mistral-7B-Instruct-v0.2 cpu 사용(6000s)
Browse files- Mistral-7B-Instruct-v0.2.py +160 -0
Mistral-7B-Instruct-v0.2.py
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# import gradio as gr
|
| 2 |
+
# from transformers import (
|
| 3 |
+
# Blip2Processor,
|
| 4 |
+
# Blip2ForConditionalGeneration,
|
| 5 |
+
# AutoTokenizer,
|
| 6 |
+
# AutoModelForCausalLM,
|
| 7 |
+
# )
|
| 8 |
+
# from PIL import Image
|
| 9 |
+
# import torch
|
| 10 |
+
|
| 11 |
+
# # Set device
|
| 12 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
+
|
| 14 |
+
# # Load image captioning model (BLIP-2)
|
| 15 |
+
# processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl")
|
| 16 |
+
# blip_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xl").to(device)
|
| 17 |
+
|
| 18 |
+
# # Load text generation model (LLM)
|
| 19 |
+
# llm_tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
|
| 20 |
+
# llm_model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2").to(device)
|
| 21 |
+
|
| 22 |
+
# # Step 1: Generate image caption
|
| 23 |
+
# def extract_caption(image):
|
| 24 |
+
# inputs = processor(images=image, return_tensors="pt").to(device)
|
| 25 |
+
# outputs = blip_model.generate(**inputs, max_new_tokens=50)
|
| 26 |
+
# caption = processor.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 27 |
+
# return caption
|
| 28 |
+
|
| 29 |
+
# # Step 2: Build fairytale prompt
|
| 30 |
+
# def build_prompt(caption):
|
| 31 |
+
# return (
|
| 32 |
+
# f"Based on the image description: \"{caption}\", write a children's fairytale.\n"
|
| 33 |
+
# "The story must:\n"
|
| 34 |
+
# "- Start with 'Once upon a time'\n"
|
| 35 |
+
# "- Be at least 10 full sentences long\n"
|
| 36 |
+
# "- Include named characters, a clear setting, emotions, a challenge, and a resolution\n"
|
| 37 |
+
# "- Avoid mentions of babies or unrelated royalty unless relevant\n"
|
| 38 |
+
# "Here is the story:\nOnce upon a time"
|
| 39 |
+
# )
|
| 40 |
+
|
| 41 |
+
# # Step 3: Generate story
|
| 42 |
+
# def generate_fairytale(image):
|
| 43 |
+
# caption = extract_caption(image)
|
| 44 |
+
# prompt = build_prompt(caption)
|
| 45 |
+
# inputs = llm_tokenizer(prompt, return_tensors="pt").to(device)
|
| 46 |
+
|
| 47 |
+
# output = llm_model.generate(
|
| 48 |
+
# **inputs,
|
| 49 |
+
# max_new_tokens=500,
|
| 50 |
+
# do_sample=True,
|
| 51 |
+
# temperature=0.9,
|
| 52 |
+
# top_p=0.95,
|
| 53 |
+
# pad_token_id=llm_tokenizer.eos_token_id
|
| 54 |
+
# )
|
| 55 |
+
|
| 56 |
+
# result = llm_tokenizer.decode(output[0], skip_special_tokens=True)
|
| 57 |
+
|
| 58 |
+
# # Trim to only the story
|
| 59 |
+
# if "Once upon a time" in result:
|
| 60 |
+
# return "Once upon a time" + result.split("Once upon a time", 1)[-1].strip()
|
| 61 |
+
# else:
|
| 62 |
+
# return f"⚠️ Failed to generate story.\n\n[Prompt]\n{prompt}\n\n[Output]\n{result}"
|
| 63 |
+
|
| 64 |
+
# # Gradio interface
|
| 65 |
+
# with gr.Blocks() as demo:
|
| 66 |
+
# gr.Markdown("## 📖 AI Fairytale Generator\nUpload an image and get a magical story!")
|
| 67 |
+
|
| 68 |
+
# with gr.Row():
|
| 69 |
+
# image_input = gr.Image(type="pil", label="Upload an image")
|
| 70 |
+
|
| 71 |
+
# with gr.Row():
|
| 72 |
+
# generate_button = gr.Button("✨ Generate Fairytale")
|
| 73 |
+
|
| 74 |
+
# with gr.Row():
|
| 75 |
+
# output_text = gr.Textbox(label="Generated Story", lines=20)
|
| 76 |
+
|
| 77 |
+
# generate_button.click(fn=generate_fairytale, inputs=[image_input], outputs=[output_text])
|
| 78 |
+
|
| 79 |
+
# if __name__ == "__main__":
|
| 80 |
+
# demo.launch(share=True)
|
| 81 |
+
|
| 82 |
+
import gradio as gr
|
| 83 |
+
from transformers import (
|
| 84 |
+
Blip2Processor,
|
| 85 |
+
Blip2ForConditionalGeneration,
|
| 86 |
+
AutoTokenizer,
|
| 87 |
+
AutoModelForCausalLM,
|
| 88 |
+
)
|
| 89 |
+
from PIL import Image
|
| 90 |
+
import torch
|
| 91 |
+
|
| 92 |
+
# 디바이스 설정 (Mistral은 CPU로 강제 설정)
|
| 93 |
+
device = "cpu"
|
| 94 |
+
|
| 95 |
+
# 1️⃣ 이미지 설명 생성 모델 로드 (BLIP-2)
|
| 96 |
+
processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl")
|
| 97 |
+
blip_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xl").to(device)
|
| 98 |
+
|
| 99 |
+
# 2️⃣ 동화 생성 모델 로드 (Mistral-7B, CPU)
|
| 100 |
+
llm_tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
|
| 101 |
+
llm_model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", device_map="cpu")
|
| 102 |
+
|
| 103 |
+
# 3️⃣ 이미지 → 설명
|
| 104 |
+
def extract_caption(image):
|
| 105 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
| 106 |
+
outputs = blip_model.generate(**inputs, max_new_tokens=50)
|
| 107 |
+
caption = processor.tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
| 108 |
+
return caption
|
| 109 |
+
|
| 110 |
+
# 4️⃣ 프롬프트 구성
|
| 111 |
+
def build_prompt(caption):
|
| 112 |
+
return (
|
| 113 |
+
f"Based on the image description: \"{caption}\", write a children's fairytale.\n"
|
| 114 |
+
"The story must:\n"
|
| 115 |
+
"- Start with 'Once upon a time'\n"
|
| 116 |
+
"- Be at least 10 full sentences long\n"
|
| 117 |
+
"- Include named characters, a clear setting, emotions, a challenge, and a resolution\n"
|
| 118 |
+
"- Avoid unrelated royalty or babies unless relevant\n"
|
| 119 |
+
"Here is the story:\nOnce upon a time"
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# 5️⃣ 전체 동화 생성
|
| 123 |
+
def generate_fairytale(image):
|
| 124 |
+
caption = extract_caption(image)
|
| 125 |
+
prompt = build_prompt(caption)
|
| 126 |
+
|
| 127 |
+
inputs = llm_tokenizer(prompt, return_tensors="pt").to(device)
|
| 128 |
+
|
| 129 |
+
output = llm_model.generate(
|
| 130 |
+
**inputs,
|
| 131 |
+
max_new_tokens=500,
|
| 132 |
+
do_sample=True,
|
| 133 |
+
temperature=0.9,
|
| 134 |
+
top_p=0.95,
|
| 135 |
+
pad_token_id=llm_tokenizer.eos_token_id
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
result = llm_tokenizer.decode(output[0], skip_special_tokens=True)
|
| 139 |
+
|
| 140 |
+
# "Once upon a time" 이후만 추출
|
| 141 |
+
if "Once upon a time" in result:
|
| 142 |
+
return caption, "Once upon a time" + result.split("Once upon a time", 1)[-1].strip()
|
| 143 |
+
else:
|
| 144 |
+
return caption, f"⚠️ Story generation failed.\n\n[Prompt]\n{prompt}\n\n[Output]\n{result}"
|
| 145 |
+
|
| 146 |
+
# 6️⃣ Gradio UI
|
| 147 |
+
with gr.Blocks() as demo:
|
| 148 |
+
gr.Markdown("## 🧚 AI Fairytale Generator (Mistral CPU ver.)")
|
| 149 |
+
gr.Markdown("Upload an image and receive a magical children's fairytale based on it ✨")
|
| 150 |
+
|
| 151 |
+
image_input = gr.Image(type="pil", label="🖼️ Upload an Image")
|
| 152 |
+
generate_button = gr.Button("✨ Generate Fairytale")
|
| 153 |
+
|
| 154 |
+
caption_output = gr.Textbox(label="📌 Image Description", lines=2)
|
| 155 |
+
story_output = gr.Textbox(label="📖 Generated Fairytale", lines=20)
|
| 156 |
+
|
| 157 |
+
generate_button.click(fn=generate_fairytale, inputs=[image_input], outputs=[caption_output, story_output])
|
| 158 |
+
|
| 159 |
+
if __name__ == "__main__":
|
| 160 |
+
demo.launch(share=True)
|