Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import pandas as pd | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.linear_model import LogisticRegression | |
| from sklearn import metrics | |
| from reader import get_article | |
| ### ------------------------------ ### | |
| ### data transformation ### | |
| ### ------------------------------ ### | |
| # options constants | |
| options = [ | |
| ['Very Poorly Aligned', 'Poorly Aligned', 'Neutrally Aligned', 'Well Aligned', 'Very Well Aligned'], | |
| ['Very Limited Experience', 'Limited Experience', 'Neutral Experience', 'Extensive Experience', 'Very Extensive Experience'], | |
| ['Extremely Unattractive', 'Moderately Unattractive', 'Neutrally Attractive', 'Moderately Attractive', 'Extremely Attractive'], | |
| ['Very Unfavorable', 'Moderately Unfavorable', 'Neutrally Favorable', 'Moderately Favorable', 'Very Favorable'], | |
| ['Very Poor Fit', 'Poor Fit', 'Neutral Fit', 'Moderately Good Fit', 'Excellent Fit'] | |
| ] | |
| # load dataset | |
| uncleaned_data = pd.read_csv('data.csv') | |
| data = pd.DataFrame() | |
| # keep track of which columns are categorical and what | |
| # those columns' value mappings are | |
| # structure: {colname1: {...}, colname2: {...} } | |
| cat_value_dicts = {} | |
| col = 0 | |
| final_colname = uncleaned_data.columns[4] | |
| # for each column... | |
| for (colname, colval) in uncleaned_data.iteritems(): | |
| # structure: {0: "lilac", 1: "blue", ...} | |
| new_dict = {} | |
| transformed_col_vals = [] # new numeric datapoints | |
| # if not, for each item in that column... | |
| for (row, item) in enumerate(colval.values): | |
| # if item is not in this col's dict... | |
| if item not in new_dict: | |
| new_dict[item] = options[col].index(item) | |
| # then add numerical value to transformed dataframe | |
| transformed_col_vals.append(new_dict[item]) | |
| # reverse dictionary only for final col (0, 1) => (vals) | |
| if colname == final_colname: | |
| new_dict = {value : key for (key, value) in new_dict.items()} | |
| cat_value_dicts[colname] = new_dict | |
| data[colname] = transformed_col_vals | |
| col += 1 | |
| ### -------------------------------- ### | |
| ### model training ### | |
| ### -------------------------------- ### | |
| # select features and predicton; automatically selects last column as prediction | |
| num_features = 4 | |
| x = data.iloc[: , :num_features] | |
| y = data.iloc[: , num_features:] | |
| # split data into training and testing sets | |
| x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25) | |
| # instantiate the model (using default parameters) | |
| model = LogisticRegression(max_iter=100) | |
| model.fit(x_train, y_train.values.ravel()) | |
| y_pred = model.predict(x_test) | |
| ### -------------------------------- ### | |
| ### article generation ### | |
| ### -------------------------------- ### | |
| # borrow file reading function from reader.py | |
| def get_feat(): | |
| feats = [abs(x) for x in model.coef_[0]] | |
| max_val = max(feats) | |
| idx = feats.index(max_val) | |
| return data.columns[idx] | |
| acc = str(round(metrics.accuracy_score(y_test, y_pred) * 100, 2)) + '%' | |
| feat = get_feat() | |
| info = get_article(acc, feat) | |
| ### ------------------------------- ### | |
| ### interface creation ### | |
| ### ------------------------------- ### | |
| def predictor(*args): | |
| features = [] | |
| # transform categorical input | |
| for num, col in enumerate(args): | |
| features.append(cat_value_dicts[data.columns[num]][col]) | |
| # predict single datapoint | |
| new_input = [features] | |
| result = model.predict(new_input) | |
| return cat_value_dicts[final_colname][result[0]] | |
| # add data labels to replace those lost via star-args | |
| inputls = [] | |
| labels = [ | |
| "How Well Do They Align with RS21's 9 Core Values?", | |
| "How Experienced Are They in RS21's Markets?", | |
| "How Attractive is Their Valuation of RS21?", | |
| "How Favorable is Their Proposed Deal Structure for RS21?" | |
| ] | |
| for num, colname in enumerate(labels): | |
| # access categories dict if data is categorical | |
| inputls.append(gr.inputs.Radio(choices=options[num], type="value", label=labels[num])) | |
| # generate gradio interface | |
| interface = gr.Interface(predictor, inputs=inputls, outputs="text", article=info['article'], css=info['css'], theme="grass", title=info['title'], allow_flagging='never', description=info['description']) | |
| # show the interface | |
| interface.launch() |