Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
|
| 4 |
-
#
|
| 5 |
-
|
|
|
|
|
|
|
| 6 |
"TinyBERT (Fill Mask)": pipeline("fill-mask", model="prajjwal1/bert-tiny"),
|
| 7 |
"DistilBERT (Fill Mask)": pipeline("fill-mask", model="distilbert-base-uncased"),
|
| 8 |
"ALBERT (Fill Mask)": pipeline("fill-mask", model="albert-base-v2"),
|
|
@@ -10,39 +12,77 @@ models = {
|
|
| 10 |
"GPT-2 (Text Generation)": pipeline("text-generation", model="gpt2")
|
| 11 |
}
|
| 12 |
|
| 13 |
-
def
|
| 14 |
-
pipe =
|
| 15 |
|
| 16 |
-
# GPT-2 → freeform text generation
|
| 17 |
if "GPT-2" in model_name:
|
| 18 |
output = pipe(text, max_length=50, do_sample=True, top_k=50, temperature=0.7)
|
| 19 |
return output[0]["generated_text"]
|
| 20 |
|
| 21 |
-
# Fill-mask models → require [MASK] token
|
| 22 |
else:
|
| 23 |
if "[MASK]" not in text:
|
| 24 |
-
# If user didn’t include a mask, append one
|
| 25 |
text = text.strip()
|
| 26 |
if not text.endswith("."):
|
| 27 |
text += "."
|
| 28 |
text = text[:-1] + " [MASK]."
|
| 29 |
|
| 30 |
-
preds = pipe(text, top_k=5)
|
| 31 |
formatted = "\n".join(
|
| 32 |
[f"{p['token_str']} (prob={p['score']:.4f})" for p in preds]
|
| 33 |
)
|
| 34 |
return f"Input: {text}\n\nPredictions:\n{formatted}"
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
with gr.Blocks() as demo:
|
| 37 |
-
gr.Markdown("# 🔥
|
| 38 |
-
"
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
|
| 4 |
+
# ----------------
|
| 5 |
+
# TEXT MODELS
|
| 6 |
+
# ----------------
|
| 7 |
+
text_models = {
|
| 8 |
"TinyBERT (Fill Mask)": pipeline("fill-mask", model="prajjwal1/bert-tiny"),
|
| 9 |
"DistilBERT (Fill Mask)": pipeline("fill-mask", model="distilbert-base-uncased"),
|
| 10 |
"ALBERT (Fill Mask)": pipeline("fill-mask", model="albert-base-v2"),
|
|
|
|
| 12 |
"GPT-2 (Text Generation)": pipeline("text-generation", model="gpt2")
|
| 13 |
}
|
| 14 |
|
| 15 |
+
def run_text_model(model_name, text):
|
| 16 |
+
pipe = text_models[model_name]
|
| 17 |
|
|
|
|
| 18 |
if "GPT-2" in model_name:
|
| 19 |
output = pipe(text, max_length=50, do_sample=True, top_k=50, temperature=0.7)
|
| 20 |
return output[0]["generated_text"]
|
| 21 |
|
|
|
|
| 22 |
else:
|
| 23 |
if "[MASK]" not in text:
|
|
|
|
| 24 |
text = text.strip()
|
| 25 |
if not text.endswith("."):
|
| 26 |
text += "."
|
| 27 |
text = text[:-1] + " [MASK]."
|
| 28 |
|
| 29 |
+
preds = pipe(text, top_k=5)
|
| 30 |
formatted = "\n".join(
|
| 31 |
[f"{p['token_str']} (prob={p['score']:.4f})" for p in preds]
|
| 32 |
)
|
| 33 |
return f"Input: {text}\n\nPredictions:\n{formatted}"
|
| 34 |
|
| 35 |
+
|
| 36 |
+
# ----------------
|
| 37 |
+
# IMAGE SEGMENTATION
|
| 38 |
+
# ----------------
|
| 39 |
+
segmentation_pipeline = pipeline(
|
| 40 |
+
"image-segmentation", model="nvidia/segformer-b0-finetuned-ade-512-512"
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
def segment_image(image):
|
| 44 |
+
results = segmentation_pipeline(image)
|
| 45 |
+
# Gradio AnnotatedImage expects (image, annotations)
|
| 46 |
+
ann = [(image, r["mask"]) for r in results]
|
| 47 |
+
return (image, ann)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
# ----------------
|
| 51 |
+
# SPEECH RECOGNITION
|
| 52 |
+
# ----------------
|
| 53 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
|
| 54 |
+
|
| 55 |
+
def transcribe(audio):
|
| 56 |
+
return asr_pipeline(audio)["text"]
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
# ----------------
|
| 60 |
+
# GRADIO APP
|
| 61 |
+
# ----------------
|
| 62 |
with gr.Blocks() as demo:
|
| 63 |
+
gr.Markdown("# 🔥 Multi-Modal Playground\n"
|
| 64 |
+
"Try **Tiny LLMs, Image Segmentation, and Speech Models** all in one app!\n\n")
|
| 65 |
+
|
| 66 |
+
# TEXT TAB
|
| 67 |
+
with gr.Tab("Text Models"):
|
| 68 |
+
model_choice = gr.Dropdown(list(text_models.keys()), label="Choose Model")
|
| 69 |
+
text_input = gr.Textbox(label="Enter text or prompt")
|
| 70 |
+
text_output = gr.Textbox(label="Output", lines=8)
|
| 71 |
+
run_btn = gr.Button("Run")
|
| 72 |
+
run_btn.click(fn=run_text_model, inputs=[model_choice, text_input], outputs=text_output)
|
| 73 |
|
| 74 |
+
# IMAGE TAB
|
| 75 |
+
with gr.Tab("Image Segmentation"):
|
| 76 |
+
img_in = gr.Image(type="pil", label="Upload an Image")
|
| 77 |
+
img_out = gr.AnnotatedImage(label="Segmented Output")
|
| 78 |
+
seg_btn = gr.Button("Segment Objects")
|
| 79 |
+
seg_btn.click(fn=segment_image, inputs=img_in, outputs=img_out)
|
| 80 |
|
| 81 |
+
# AUDIO TAB
|
| 82 |
+
with gr.Tab("Speech Recognition"):
|
| 83 |
+
audio_in = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Upload or record audio")
|
| 84 |
+
audio_out = gr.Textbox(label="Transcription")
|
| 85 |
+
asr_btn = gr.Button("Transcribe")
|
| 86 |
+
asr_btn.click(fn=transcribe, inputs=audio_in, outputs=audio_out)
|
| 87 |
|
| 88 |
demo.launch()
|