Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
-
|
| 4 |
# ----------------
|
| 5 |
# TEXT MODELS
|
| 6 |
# ----------------
|
|
@@ -42,9 +42,11 @@ segmentation_pipeline = pipeline(
|
|
| 42 |
|
| 43 |
def segment_image(image):
|
| 44 |
results = segmentation_pipeline(image)
|
| 45 |
-
#
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
| 48 |
|
| 49 |
|
| 50 |
# ----------------
|
|
@@ -52,10 +54,13 @@ def segment_image(image):
|
|
| 52 |
# ----------------
|
| 53 |
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
|
| 54 |
|
| 55 |
-
def transcribe(audio):
|
| 56 |
-
return asr_pipeline(audio)["text"]
|
| 57 |
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
# ----------------
|
| 60 |
# GRADIO APP
|
| 61 |
# ----------------
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
+
import librosa
|
| 4 |
# ----------------
|
| 5 |
# TEXT MODELS
|
| 6 |
# ----------------
|
|
|
|
| 42 |
|
| 43 |
def segment_image(image):
|
| 44 |
results = segmentation_pipeline(image)
|
| 45 |
+
# Combine masks into a single image with labels
|
| 46 |
+
annotated = {}
|
| 47 |
+
for r in results:
|
| 48 |
+
annotated[r["label"]] = r["mask"] # label → mask
|
| 49 |
+
return (image, annotated)
|
| 50 |
|
| 51 |
|
| 52 |
# ----------------
|
|
|
|
| 54 |
# ----------------
|
| 55 |
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
|
| 56 |
|
|
|
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
+
def transcribe(audio):
|
| 60 |
+
# Load with max 30s duration
|
| 61 |
+
speech, sr = librosa.load(audio, sr=16000, duration=30)
|
| 62 |
+
return asr_pipeline({"array": speech, "sampling_rate": sr}, return_timestamps=True)["text"]
|
| 63 |
+
|
| 64 |
# ----------------
|
| 65 |
# GRADIO APP
|
| 66 |
# ----------------
|