Update app.py
Browse files
app.py
CHANGED
|
@@ -4,17 +4,19 @@ import numpy as np
|
|
| 4 |
import random
|
| 5 |
from PIL import Image
|
| 6 |
import cv2
|
|
|
|
| 7 |
|
| 8 |
# -----------------------
|
| 9 |
# Load Models
|
| 10 |
# -----------------------
|
| 11 |
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
|
| 12 |
segmentation_pipeline = pipeline("image-segmentation", model="facebook/mask2former-swin-base-coco")
|
|
|
|
| 13 |
device = "cpu"
|
| 14 |
print(f"Device set to use {device}")
|
| 15 |
|
| 16 |
# -----------------------
|
| 17 |
-
# Image Segmentation
|
| 18 |
# -----------------------
|
| 19 |
def segment_image(image: Image.Image):
|
| 20 |
results = segmentation_pipeline(image)
|
|
@@ -23,7 +25,7 @@ def segment_image(image: Image.Image):
|
|
| 23 |
annotations = []
|
| 24 |
|
| 25 |
for r in results:
|
| 26 |
-
mask = np.array(r["mask"]) > 0
|
| 27 |
label = r["label"]
|
| 28 |
|
| 29 |
color = [random.randint(0, 255) for _ in range(3)]
|
|
@@ -42,10 +44,9 @@ def transcribe_audio(audio_file):
|
|
| 42 |
return result["text"]
|
| 43 |
|
| 44 |
# -----------------------
|
| 45 |
-
# Video Segmentation
|
| 46 |
# -----------------------
|
| 47 |
def segment_video(video):
|
| 48 |
-
"""Takes a video file path or webcam frame and applies segmentation frame-by-frame."""
|
| 49 |
cap = cv2.VideoCapture(video)
|
| 50 |
frames_out = []
|
| 51 |
|
|
@@ -54,17 +55,17 @@ def segment_video(video):
|
|
| 54 |
if not ret:
|
| 55 |
break
|
| 56 |
|
| 57 |
-
#
|
| 58 |
-
|
| 59 |
-
results = segmentation_pipeline(Image.fromarray(frame_rgb))
|
| 60 |
|
| 61 |
-
overlay =
|
| 62 |
-
for
|
| 63 |
-
|
|
|
|
| 64 |
color = [random.randint(0, 255) for _ in range(3)]
|
| 65 |
-
overlay
|
| 66 |
|
| 67 |
-
frames_out.append(
|
| 68 |
|
| 69 |
cap.release()
|
| 70 |
|
|
@@ -83,19 +84,19 @@ def segment_video(video):
|
|
| 83 |
# Gradio UI
|
| 84 |
# -----------------------
|
| 85 |
with gr.Blocks(theme="soft") as demo:
|
| 86 |
-
gr.Markdown("## 🧠Multimodal Playground\nTry speech recognition, image segmentation, and
|
| 87 |
|
| 88 |
with gr.Tab("🎤 Speech-to-Text"):
|
| 89 |
audio_in = gr.Audio(sources=["microphone", "upload"], type="filepath")
|
| 90 |
text_out = gr.Textbox()
|
| 91 |
audio_in.change(transcribe_audio, inputs=audio_in, outputs=text_out)
|
| 92 |
|
| 93 |
-
with gr.Tab("🖼 Image Segmentation"):
|
| 94 |
image_in = gr.Image(type="pil")
|
| 95 |
image_out = gr.AnnotatedImage()
|
| 96 |
image_in.change(segment_image, inputs=image_in, outputs=image_out)
|
| 97 |
|
| 98 |
-
with gr.Tab("🎥 Video Segmentation"):
|
| 99 |
video_in = gr.Video()
|
| 100 |
video_out = gr.Video()
|
| 101 |
video_btn = gr.Button("Run Segmentation")
|
|
|
|
| 4 |
import random
|
| 5 |
from PIL import Image
|
| 6 |
import cv2
|
| 7 |
+
from ultralytics import YOLO
|
| 8 |
|
| 9 |
# -----------------------
|
| 10 |
# Load Models
|
| 11 |
# -----------------------
|
| 12 |
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
|
| 13 |
segmentation_pipeline = pipeline("image-segmentation", model="facebook/mask2former-swin-base-coco")
|
| 14 |
+
yolo_model = YOLO("yolov8n-seg.pt") # tiny YOLOv8 segmentation model
|
| 15 |
device = "cpu"
|
| 16 |
print(f"Device set to use {device}")
|
| 17 |
|
| 18 |
# -----------------------
|
| 19 |
+
# Image Segmentation (Mask2Former)
|
| 20 |
# -----------------------
|
| 21 |
def segment_image(image: Image.Image):
|
| 22 |
results = segmentation_pipeline(image)
|
|
|
|
| 25 |
annotations = []
|
| 26 |
|
| 27 |
for r in results:
|
| 28 |
+
mask = np.array(r["mask"]) > 0
|
| 29 |
label = r["label"]
|
| 30 |
|
| 31 |
color = [random.randint(0, 255) for _ in range(3)]
|
|
|
|
| 44 |
return result["text"]
|
| 45 |
|
| 46 |
# -----------------------
|
| 47 |
+
# Video Segmentation (YOLOv8-seg)
|
| 48 |
# -----------------------
|
| 49 |
def segment_video(video):
|
|
|
|
| 50 |
cap = cv2.VideoCapture(video)
|
| 51 |
frames_out = []
|
| 52 |
|
|
|
|
| 55 |
if not ret:
|
| 56 |
break
|
| 57 |
|
| 58 |
+
# Run YOLO segmentation
|
| 59 |
+
results = yolo_model(frame)[0]
|
|
|
|
| 60 |
|
| 61 |
+
overlay = frame.copy()
|
| 62 |
+
for mask, cls in zip(results.masks.xy, results.boxes.cls):
|
| 63 |
+
# Convert polygon points to int
|
| 64 |
+
pts = np.array(mask, dtype=np.int32)
|
| 65 |
color = [random.randint(0, 255) for _ in range(3)]
|
| 66 |
+
cv2.fillPoly(overlay, [pts], color)
|
| 67 |
|
| 68 |
+
frames_out.append(overlay)
|
| 69 |
|
| 70 |
cap.release()
|
| 71 |
|
|
|
|
| 84 |
# Gradio UI
|
| 85 |
# -----------------------
|
| 86 |
with gr.Blocks(theme="soft") as demo:
|
| 87 |
+
gr.Markdown("## 🧠Multimodal Playground\nTry speech recognition, image segmentation, and real-time YOLOv8 video segmentation.")
|
| 88 |
|
| 89 |
with gr.Tab("🎤 Speech-to-Text"):
|
| 90 |
audio_in = gr.Audio(sources=["microphone", "upload"], type="filepath")
|
| 91 |
text_out = gr.Textbox()
|
| 92 |
audio_in.change(transcribe_audio, inputs=audio_in, outputs=text_out)
|
| 93 |
|
| 94 |
+
with gr.Tab("🖼 Image Segmentation (Mask2Former)"):
|
| 95 |
image_in = gr.Image(type="pil")
|
| 96 |
image_out = gr.AnnotatedImage()
|
| 97 |
image_in.change(segment_image, inputs=image_in, outputs=image_out)
|
| 98 |
|
| 99 |
+
with gr.Tab("🎥 Video Segmentation (YOLOv8-seg)"):
|
| 100 |
video_in = gr.Video()
|
| 101 |
video_out = gr.Video()
|
| 102 |
video_btn = gr.Button("Run Segmentation")
|