Spaces:
Runtime error
Runtime error
Commit
·
2c87ef6
1
Parent(s):
f127d58
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import cv2
|
| 3 |
+
from PIL import Image as PilImage
|
| 4 |
+
from PIL import ImageDraw
|
| 5 |
+
import numpy as np
|
| 6 |
+
import io
|
| 7 |
+
import base64
|
| 8 |
+
|
| 9 |
+
# Load the face detection classifier
|
| 10 |
+
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
|
| 11 |
+
|
| 12 |
+
def detect_and_write_on_faces(image):
|
| 13 |
+
text_to_write = "Happy faces, this person has a retention rate of 69% in a balanced way."
|
| 14 |
+
|
| 15 |
+
# Convert the uploaded image to grayscale for face detection
|
| 16 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 17 |
+
|
| 18 |
+
# Detect faces in the image
|
| 19 |
+
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
|
| 20 |
+
|
| 21 |
+
# Convert the OpenCV image to a Pillow image
|
| 22 |
+
pil_image = PilImage.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
| 23 |
+
draw = ImageDraw.Draw(pil_image)
|
| 24 |
+
|
| 25 |
+
for (x, y, w, h) in faces:
|
| 26 |
+
# Write text on the detected face
|
| 27 |
+
draw.text((x, y - 10), text_to_write, fill=(255, 0, 0, 0))
|
| 28 |
+
|
| 29 |
+
# Convert the Pillow image back to OpenCV format
|
| 30 |
+
image_with_text = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
| 31 |
+
|
| 32 |
+
return image_with_text
|
| 33 |
+
|
| 34 |
+
st.title("Face Detection and Text Writing")
|
| 35 |
+
|
| 36 |
+
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
| 37 |
+
|
| 38 |
+
if uploaded_image is not None:
|
| 39 |
+
if st.button("Process Image"):
|
| 40 |
+
input_image = cv2.imdecode(np.frombuffer(uploaded_image.read(), np.uint8), -1)
|
| 41 |
+
result_image = detect_and_write_on_faces(input_image)
|
| 42 |
+
|
| 43 |
+
st.image(result_image, caption="Processed Image", use_column_width=True)
|
| 44 |
+
|
| 45 |
+
# Allow the user to download the processed image as a JPEG file
|
| 46 |
+
output_buffer = io.BytesIO()
|
| 47 |
+
PilImage.fromarray(result_image).save(output_buffer, format="JPEG")
|
| 48 |
+
st.markdown("### Download Processed Image")
|
| 49 |
+
st.markdown(
|
| 50 |
+
f"Download your processed image [here](data:file/jpeg;base64,{base64.b64encode(output_buffer.getvalue()).decode()})"
|
| 51 |
+
)
|