Spaces:
Runtime error
Runtime error
| import argparse | |
| import sys | |
| import torch | |
| from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
| from diffusers.schedulers import DDIMScheduler | |
| from diffusers.utils import logging | |
| from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection | |
| sys.path.append("extern/") | |
| from accelerate import init_empty_weights | |
| from accelerate.utils import set_module_tensor_to_device | |
| from zero123 import CLIPCameraProjection, Zero123Pipeline | |
| logger = logging.get_logger(__name__) | |
| def create_unet_diffusers_config(original_config, image_size: int, controlnet=False): | |
| """ | |
| Creates a config for the diffusers based on the config of the LDM model. | |
| """ | |
| if controlnet: | |
| unet_params = original_config.model.params.control_stage_config.params | |
| else: | |
| if ( | |
| "unet_config" in original_config.model.params | |
| and original_config.model.params.unet_config is not None | |
| ): | |
| unet_params = original_config.model.params.unet_config.params | |
| else: | |
| unet_params = original_config.model.params.network_config.params | |
| vae_params = original_config.model.params.first_stage_config.params.ddconfig | |
| block_out_channels = [ | |
| unet_params.model_channels * mult for mult in unet_params.channel_mult | |
| ] | |
| down_block_types = [] | |
| resolution = 1 | |
| for i in range(len(block_out_channels)): | |
| block_type = ( | |
| "CrossAttnDownBlock2D" | |
| if resolution in unet_params.attention_resolutions | |
| else "DownBlock2D" | |
| ) | |
| down_block_types.append(block_type) | |
| if i != len(block_out_channels) - 1: | |
| resolution *= 2 | |
| up_block_types = [] | |
| for i in range(len(block_out_channels)): | |
| block_type = ( | |
| "CrossAttnUpBlock2D" | |
| if resolution in unet_params.attention_resolutions | |
| else "UpBlock2D" | |
| ) | |
| up_block_types.append(block_type) | |
| resolution //= 2 | |
| if unet_params.transformer_depth is not None: | |
| transformer_layers_per_block = ( | |
| unet_params.transformer_depth | |
| if isinstance(unet_params.transformer_depth, int) | |
| else list(unet_params.transformer_depth) | |
| ) | |
| else: | |
| transformer_layers_per_block = 1 | |
| vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1) | |
| head_dim = unet_params.num_heads if "num_heads" in unet_params else None | |
| use_linear_projection = ( | |
| unet_params.use_linear_in_transformer | |
| if "use_linear_in_transformer" in unet_params | |
| else False | |
| ) | |
| if use_linear_projection: | |
| # stable diffusion 2-base-512 and 2-768 | |
| if head_dim is None: | |
| head_dim_mult = unet_params.model_channels // unet_params.num_head_channels | |
| head_dim = [head_dim_mult * c for c in list(unet_params.channel_mult)] | |
| class_embed_type = None | |
| addition_embed_type = None | |
| addition_time_embed_dim = None | |
| projection_class_embeddings_input_dim = None | |
| context_dim = None | |
| if unet_params.context_dim is not None: | |
| context_dim = ( | |
| unet_params.context_dim | |
| if isinstance(unet_params.context_dim, int) | |
| else unet_params.context_dim[0] | |
| ) | |
| if "num_classes" in unet_params: | |
| if unet_params.num_classes == "sequential": | |
| if context_dim in [2048, 1280]: | |
| # SDXL | |
| addition_embed_type = "text_time" | |
| addition_time_embed_dim = 256 | |
| else: | |
| class_embed_type = "projection" | |
| assert "adm_in_channels" in unet_params | |
| projection_class_embeddings_input_dim = unet_params.adm_in_channels | |
| else: | |
| raise NotImplementedError( | |
| f"Unknown conditional unet num_classes config: {unet_params.num_classes}" | |
| ) | |
| config = { | |
| "sample_size": image_size // vae_scale_factor, | |
| "in_channels": unet_params.in_channels, | |
| "down_block_types": tuple(down_block_types), | |
| "block_out_channels": tuple(block_out_channels), | |
| "layers_per_block": unet_params.num_res_blocks, | |
| "cross_attention_dim": context_dim, | |
| "attention_head_dim": head_dim, | |
| "use_linear_projection": use_linear_projection, | |
| "class_embed_type": class_embed_type, | |
| "addition_embed_type": addition_embed_type, | |
| "addition_time_embed_dim": addition_time_embed_dim, | |
| "projection_class_embeddings_input_dim": projection_class_embeddings_input_dim, | |
| "transformer_layers_per_block": transformer_layers_per_block, | |
| } | |
| if controlnet: | |
| config["conditioning_channels"] = unet_params.hint_channels | |
| else: | |
| config["out_channels"] = unet_params.out_channels | |
| config["up_block_types"] = tuple(up_block_types) | |
| return config | |
| def assign_to_checkpoint( | |
| paths, | |
| checkpoint, | |
| old_checkpoint, | |
| attention_paths_to_split=None, | |
| additional_replacements=None, | |
| config=None, | |
| ): | |
| """ | |
| This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits | |
| attention layers, and takes into account additional replacements that may arise. | |
| Assigns the weights to the new checkpoint. | |
| """ | |
| assert isinstance( | |
| paths, list | |
| ), "Paths should be a list of dicts containing 'old' and 'new' keys." | |
| # Splits the attention layers into three variables. | |
| if attention_paths_to_split is not None: | |
| for path, path_map in attention_paths_to_split.items(): | |
| old_tensor = old_checkpoint[path] | |
| channels = old_tensor.shape[0] // 3 | |
| target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) | |
| num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 | |
| old_tensor = old_tensor.reshape( | |
| (num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] | |
| ) | |
| query, key, value = old_tensor.split(channels // num_heads, dim=1) | |
| checkpoint[path_map["query"]] = query.reshape(target_shape) | |
| checkpoint[path_map["key"]] = key.reshape(target_shape) | |
| checkpoint[path_map["value"]] = value.reshape(target_shape) | |
| for path in paths: | |
| new_path = path["new"] | |
| # These have already been assigned | |
| if ( | |
| attention_paths_to_split is not None | |
| and new_path in attention_paths_to_split | |
| ): | |
| continue | |
| # Global renaming happens here | |
| new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") | |
| new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") | |
| new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") | |
| if additional_replacements is not None: | |
| for replacement in additional_replacements: | |
| new_path = new_path.replace(replacement["old"], replacement["new"]) | |
| # proj_attn.weight has to be converted from conv 1D to linear | |
| is_attn_weight = "proj_attn.weight" in new_path or ( | |
| "attentions" in new_path and "to_" in new_path | |
| ) | |
| shape = old_checkpoint[path["old"]].shape | |
| if is_attn_weight and len(shape) == 3: | |
| checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] | |
| elif is_attn_weight and len(shape) == 4: | |
| checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0] | |
| else: | |
| checkpoint[new_path] = old_checkpoint[path["old"]] | |
| def shave_segments(path, n_shave_prefix_segments=1): | |
| """ | |
| Removes segments. Positive values shave the first segments, negative shave the last segments. | |
| """ | |
| if n_shave_prefix_segments >= 0: | |
| return ".".join(path.split(".")[n_shave_prefix_segments:]) | |
| else: | |
| return ".".join(path.split(".")[:n_shave_prefix_segments]) | |
| def renew_resnet_paths(old_list, n_shave_prefix_segments=0): | |
| """ | |
| Updates paths inside resnets to the new naming scheme (local renaming) | |
| """ | |
| mapping = [] | |
| for old_item in old_list: | |
| new_item = old_item.replace("in_layers.0", "norm1") | |
| new_item = new_item.replace("in_layers.2", "conv1") | |
| new_item = new_item.replace("out_layers.0", "norm2") | |
| new_item = new_item.replace("out_layers.3", "conv2") | |
| new_item = new_item.replace("emb_layers.1", "time_emb_proj") | |
| new_item = new_item.replace("skip_connection", "conv_shortcut") | |
| new_item = shave_segments( | |
| new_item, n_shave_prefix_segments=n_shave_prefix_segments | |
| ) | |
| mapping.append({"old": old_item, "new": new_item}) | |
| return mapping | |
| def renew_attention_paths(old_list, n_shave_prefix_segments=0): | |
| """ | |
| Updates paths inside attentions to the new naming scheme (local renaming) | |
| """ | |
| mapping = [] | |
| for old_item in old_list: | |
| new_item = old_item | |
| # new_item = new_item.replace('norm.weight', 'group_norm.weight') | |
| # new_item = new_item.replace('norm.bias', 'group_norm.bias') | |
| # new_item = new_item.replace('proj_out.weight', 'proj_attn.weight') | |
| # new_item = new_item.replace('proj_out.bias', 'proj_attn.bias') | |
| # new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) | |
| mapping.append({"old": old_item, "new": new_item}) | |
| return mapping | |
| def convert_ldm_unet_checkpoint( | |
| checkpoint, | |
| config, | |
| path=None, | |
| extract_ema=False, | |
| controlnet=False, | |
| skip_extract_state_dict=False, | |
| ): | |
| """ | |
| Takes a state dict and a config, and returns a converted checkpoint. | |
| """ | |
| if skip_extract_state_dict: | |
| unet_state_dict = checkpoint | |
| else: | |
| # extract state_dict for UNet | |
| unet_state_dict = {} | |
| keys = list(checkpoint.keys()) | |
| if controlnet: | |
| unet_key = "control_model." | |
| else: | |
| unet_key = "model.diffusion_model." | |
| # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA | |
| if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema: | |
| logger.warning(f"Checkpoint {path} has both EMA and non-EMA weights.") | |
| logger.warning( | |
| "In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" | |
| " weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." | |
| ) | |
| for key in keys: | |
| if key.startswith("model.diffusion_model"): | |
| flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) | |
| unet_state_dict[key.replace(unet_key, "")] = checkpoint[ | |
| flat_ema_key | |
| ] | |
| else: | |
| if sum(k.startswith("model_ema") for k in keys) > 100: | |
| logger.warning( | |
| "In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" | |
| " weights (usually better for inference), please make sure to add the `--extract_ema` flag." | |
| ) | |
| for key in keys: | |
| if key.startswith(unet_key): | |
| unet_state_dict[key.replace(unet_key, "")] = checkpoint[key] | |
| new_checkpoint = {} | |
| new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict[ | |
| "time_embed.0.weight" | |
| ] | |
| new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict[ | |
| "time_embed.0.bias" | |
| ] | |
| new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict[ | |
| "time_embed.2.weight" | |
| ] | |
| new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict[ | |
| "time_embed.2.bias" | |
| ] | |
| if config["class_embed_type"] is None: | |
| # No parameters to port | |
| ... | |
| elif ( | |
| config["class_embed_type"] == "timestep" | |
| or config["class_embed_type"] == "projection" | |
| ): | |
| new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict[ | |
| "label_emb.0.0.weight" | |
| ] | |
| new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict[ | |
| "label_emb.0.0.bias" | |
| ] | |
| new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict[ | |
| "label_emb.0.2.weight" | |
| ] | |
| new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict[ | |
| "label_emb.0.2.bias" | |
| ] | |
| else: | |
| raise NotImplementedError( | |
| f"Not implemented `class_embed_type`: {config['class_embed_type']}" | |
| ) | |
| if config["addition_embed_type"] == "text_time": | |
| new_checkpoint["add_embedding.linear_1.weight"] = unet_state_dict[ | |
| "label_emb.0.0.weight" | |
| ] | |
| new_checkpoint["add_embedding.linear_1.bias"] = unet_state_dict[ | |
| "label_emb.0.0.bias" | |
| ] | |
| new_checkpoint["add_embedding.linear_2.weight"] = unet_state_dict[ | |
| "label_emb.0.2.weight" | |
| ] | |
| new_checkpoint["add_embedding.linear_2.bias"] = unet_state_dict[ | |
| "label_emb.0.2.bias" | |
| ] | |
| new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] | |
| new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] | |
| if not controlnet: | |
| new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] | |
| new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] | |
| new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] | |
| new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] | |
| # Retrieves the keys for the input blocks only | |
| num_input_blocks = len( | |
| { | |
| ".".join(layer.split(".")[:2]) | |
| for layer in unet_state_dict | |
| if "input_blocks" in layer | |
| } | |
| ) | |
| input_blocks = { | |
| layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] | |
| for layer_id in range(num_input_blocks) | |
| } | |
| # Retrieves the keys for the middle blocks only | |
| num_middle_blocks = len( | |
| { | |
| ".".join(layer.split(".")[:2]) | |
| for layer in unet_state_dict | |
| if "middle_block" in layer | |
| } | |
| ) | |
| middle_blocks = { | |
| layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] | |
| for layer_id in range(num_middle_blocks) | |
| } | |
| # Retrieves the keys for the output blocks only | |
| num_output_blocks = len( | |
| { | |
| ".".join(layer.split(".")[:2]) | |
| for layer in unet_state_dict | |
| if "output_blocks" in layer | |
| } | |
| ) | |
| output_blocks = { | |
| layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] | |
| for layer_id in range(num_output_blocks) | |
| } | |
| for i in range(1, num_input_blocks): | |
| block_id = (i - 1) // (config["layers_per_block"] + 1) | |
| layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) | |
| resnets = [ | |
| key | |
| for key in input_blocks[i] | |
| if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key | |
| ] | |
| attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] | |
| if f"input_blocks.{i}.0.op.weight" in unet_state_dict: | |
| new_checkpoint[ | |
| f"down_blocks.{block_id}.downsamplers.0.conv.weight" | |
| ] = unet_state_dict.pop(f"input_blocks.{i}.0.op.weight") | |
| new_checkpoint[ | |
| f"down_blocks.{block_id}.downsamplers.0.conv.bias" | |
| ] = unet_state_dict.pop(f"input_blocks.{i}.0.op.bias") | |
| paths = renew_resnet_paths(resnets) | |
| meta_path = { | |
| "old": f"input_blocks.{i}.0", | |
| "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}", | |
| } | |
| assign_to_checkpoint( | |
| paths, | |
| new_checkpoint, | |
| unet_state_dict, | |
| additional_replacements=[meta_path], | |
| config=config, | |
| ) | |
| if len(attentions): | |
| paths = renew_attention_paths(attentions) | |
| meta_path = { | |
| "old": f"input_blocks.{i}.1", | |
| "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}", | |
| } | |
| assign_to_checkpoint( | |
| paths, | |
| new_checkpoint, | |
| unet_state_dict, | |
| additional_replacements=[meta_path], | |
| config=config, | |
| ) | |
| resnet_0 = middle_blocks[0] | |
| attentions = middle_blocks[1] | |
| resnet_1 = middle_blocks[2] | |
| resnet_0_paths = renew_resnet_paths(resnet_0) | |
| assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) | |
| resnet_1_paths = renew_resnet_paths(resnet_1) | |
| assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) | |
| attentions_paths = renew_attention_paths(attentions) | |
| meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} | |
| assign_to_checkpoint( | |
| attentions_paths, | |
| new_checkpoint, | |
| unet_state_dict, | |
| additional_replacements=[meta_path], | |
| config=config, | |
| ) | |
| for i in range(num_output_blocks): | |
| block_id = i // (config["layers_per_block"] + 1) | |
| layer_in_block_id = i % (config["layers_per_block"] + 1) | |
| output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] | |
| output_block_list = {} | |
| for layer in output_block_layers: | |
| layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) | |
| if layer_id in output_block_list: | |
| output_block_list[layer_id].append(layer_name) | |
| else: | |
| output_block_list[layer_id] = [layer_name] | |
| if len(output_block_list) > 1: | |
| resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] | |
| attentions = [ | |
| key for key in output_blocks[i] if f"output_blocks.{i}.1" in key | |
| ] | |
| resnet_0_paths = renew_resnet_paths(resnets) | |
| paths = renew_resnet_paths(resnets) | |
| meta_path = { | |
| "old": f"output_blocks.{i}.0", | |
| "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}", | |
| } | |
| assign_to_checkpoint( | |
| paths, | |
| new_checkpoint, | |
| unet_state_dict, | |
| additional_replacements=[meta_path], | |
| config=config, | |
| ) | |
| output_block_list = {k: sorted(v) for k, v in output_block_list.items()} | |
| if ["conv.bias", "conv.weight"] in output_block_list.values(): | |
| index = list(output_block_list.values()).index( | |
| ["conv.bias", "conv.weight"] | |
| ) | |
| new_checkpoint[ | |
| f"up_blocks.{block_id}.upsamplers.0.conv.weight" | |
| ] = unet_state_dict[f"output_blocks.{i}.{index}.conv.weight"] | |
| new_checkpoint[ | |
| f"up_blocks.{block_id}.upsamplers.0.conv.bias" | |
| ] = unet_state_dict[f"output_blocks.{i}.{index}.conv.bias"] | |
| # Clear attentions as they have been attributed above. | |
| if len(attentions) == 2: | |
| attentions = [] | |
| if len(attentions): | |
| paths = renew_attention_paths(attentions) | |
| meta_path = { | |
| "old": f"output_blocks.{i}.1", | |
| "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", | |
| } | |
| assign_to_checkpoint( | |
| paths, | |
| new_checkpoint, | |
| unet_state_dict, | |
| additional_replacements=[meta_path], | |
| config=config, | |
| ) | |
| else: | |
| resnet_0_paths = renew_resnet_paths( | |
| output_block_layers, n_shave_prefix_segments=1 | |
| ) | |
| for path in resnet_0_paths: | |
| old_path = ".".join(["output_blocks", str(i), path["old"]]) | |
| new_path = ".".join( | |
| [ | |
| "up_blocks", | |
| str(block_id), | |
| "resnets", | |
| str(layer_in_block_id), | |
| path["new"], | |
| ] | |
| ) | |
| new_checkpoint[new_path] = unet_state_dict[old_path] | |
| if controlnet: | |
| # conditioning embedding | |
| orig_index = 0 | |
| new_checkpoint[ | |
| "controlnet_cond_embedding.conv_in.weight" | |
| ] = unet_state_dict.pop(f"input_hint_block.{orig_index}.weight") | |
| new_checkpoint["controlnet_cond_embedding.conv_in.bias"] = unet_state_dict.pop( | |
| f"input_hint_block.{orig_index}.bias" | |
| ) | |
| orig_index += 2 | |
| diffusers_index = 0 | |
| while diffusers_index < 6: | |
| new_checkpoint[ | |
| f"controlnet_cond_embedding.blocks.{diffusers_index}.weight" | |
| ] = unet_state_dict.pop(f"input_hint_block.{orig_index}.weight") | |
| new_checkpoint[ | |
| f"controlnet_cond_embedding.blocks.{diffusers_index}.bias" | |
| ] = unet_state_dict.pop(f"input_hint_block.{orig_index}.bias") | |
| diffusers_index += 1 | |
| orig_index += 2 | |
| new_checkpoint[ | |
| "controlnet_cond_embedding.conv_out.weight" | |
| ] = unet_state_dict.pop(f"input_hint_block.{orig_index}.weight") | |
| new_checkpoint["controlnet_cond_embedding.conv_out.bias"] = unet_state_dict.pop( | |
| f"input_hint_block.{orig_index}.bias" | |
| ) | |
| # down blocks | |
| for i in range(num_input_blocks): | |
| new_checkpoint[f"controlnet_down_blocks.{i}.weight"] = unet_state_dict.pop( | |
| f"zero_convs.{i}.0.weight" | |
| ) | |
| new_checkpoint[f"controlnet_down_blocks.{i}.bias"] = unet_state_dict.pop( | |
| f"zero_convs.{i}.0.bias" | |
| ) | |
| # mid block | |
| new_checkpoint["controlnet_mid_block.weight"] = unet_state_dict.pop( | |
| "middle_block_out.0.weight" | |
| ) | |
| new_checkpoint["controlnet_mid_block.bias"] = unet_state_dict.pop( | |
| "middle_block_out.0.bias" | |
| ) | |
| return new_checkpoint | |
| def create_vae_diffusers_config(original_config, image_size: int): | |
| """ | |
| Creates a config for the diffusers based on the config of the LDM model. | |
| """ | |
| vae_params = original_config.model.params.first_stage_config.params.ddconfig | |
| _ = original_config.model.params.first_stage_config.params.embed_dim | |
| block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult] | |
| down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) | |
| up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) | |
| config = { | |
| "sample_size": image_size, | |
| "in_channels": vae_params.in_channels, | |
| "out_channels": vae_params.out_ch, | |
| "down_block_types": tuple(down_block_types), | |
| "up_block_types": tuple(up_block_types), | |
| "block_out_channels": tuple(block_out_channels), | |
| "latent_channels": vae_params.z_channels, | |
| "layers_per_block": vae_params.num_res_blocks, | |
| } | |
| return config | |
| def convert_ldm_vae_checkpoint(checkpoint, config): | |
| # extract state dict for VAE | |
| vae_state_dict = {} | |
| vae_key = "first_stage_model." | |
| keys = list(checkpoint.keys()) | |
| for key in keys: | |
| if key.startswith(vae_key): | |
| vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) | |
| new_checkpoint = {} | |
| new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] | |
| new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] | |
| new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[ | |
| "encoder.conv_out.weight" | |
| ] | |
| new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] | |
| new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[ | |
| "encoder.norm_out.weight" | |
| ] | |
| new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict[ | |
| "encoder.norm_out.bias" | |
| ] | |
| new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] | |
| new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] | |
| new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[ | |
| "decoder.conv_out.weight" | |
| ] | |
| new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] | |
| new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[ | |
| "decoder.norm_out.weight" | |
| ] | |
| new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict[ | |
| "decoder.norm_out.bias" | |
| ] | |
| new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] | |
| new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] | |
| new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] | |
| new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] | |
| # Retrieves the keys for the encoder down blocks only | |
| num_down_blocks = len( | |
| { | |
| ".".join(layer.split(".")[:3]) | |
| for layer in vae_state_dict | |
| if "encoder.down" in layer | |
| } | |
| ) | |
| down_blocks = { | |
| layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] | |
| for layer_id in range(num_down_blocks) | |
| } | |
| # Retrieves the keys for the decoder up blocks only | |
| num_up_blocks = len( | |
| { | |
| ".".join(layer.split(".")[:3]) | |
| for layer in vae_state_dict | |
| if "decoder.up" in layer | |
| } | |
| ) | |
| up_blocks = { | |
| layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] | |
| for layer_id in range(num_up_blocks) | |
| } | |
| for i in range(num_down_blocks): | |
| resnets = [ | |
| key | |
| for key in down_blocks[i] | |
| if f"down.{i}" in key and f"down.{i}.downsample" not in key | |
| ] | |
| if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: | |
| new_checkpoint[ | |
| f"encoder.down_blocks.{i}.downsamplers.0.conv.weight" | |
| ] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight") | |
| new_checkpoint[ | |
| f"encoder.down_blocks.{i}.downsamplers.0.conv.bias" | |
| ] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias") | |
| paths = renew_vae_resnet_paths(resnets) | |
| meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} | |
| assign_to_checkpoint( | |
| paths, | |
| new_checkpoint, | |
| vae_state_dict, | |
| additional_replacements=[meta_path], | |
| config=config, | |
| ) | |
| mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] | |
| num_mid_res_blocks = 2 | |
| for i in range(1, num_mid_res_blocks + 1): | |
| resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] | |
| paths = renew_vae_resnet_paths(resnets) | |
| meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
| assign_to_checkpoint( | |
| paths, | |
| new_checkpoint, | |
| vae_state_dict, | |
| additional_replacements=[meta_path], | |
| config=config, | |
| ) | |
| mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] | |
| paths = renew_vae_attention_paths(mid_attentions) | |
| meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
| assign_to_checkpoint( | |
| paths, | |
| new_checkpoint, | |
| vae_state_dict, | |
| additional_replacements=[meta_path], | |
| config=config, | |
| ) | |
| conv_attn_to_linear(new_checkpoint) | |
| for i in range(num_up_blocks): | |
| block_id = num_up_blocks - 1 - i | |
| resnets = [ | |
| key | |
| for key in up_blocks[block_id] | |
| if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key | |
| ] | |
| if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: | |
| new_checkpoint[ | |
| f"decoder.up_blocks.{i}.upsamplers.0.conv.weight" | |
| ] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"] | |
| new_checkpoint[ | |
| f"decoder.up_blocks.{i}.upsamplers.0.conv.bias" | |
| ] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"] | |
| paths = renew_vae_resnet_paths(resnets) | |
| meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} | |
| assign_to_checkpoint( | |
| paths, | |
| new_checkpoint, | |
| vae_state_dict, | |
| additional_replacements=[meta_path], | |
| config=config, | |
| ) | |
| mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] | |
| num_mid_res_blocks = 2 | |
| for i in range(1, num_mid_res_blocks + 1): | |
| resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] | |
| paths = renew_vae_resnet_paths(resnets) | |
| meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} | |
| assign_to_checkpoint( | |
| paths, | |
| new_checkpoint, | |
| vae_state_dict, | |
| additional_replacements=[meta_path], | |
| config=config, | |
| ) | |
| mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] | |
| paths = renew_vae_attention_paths(mid_attentions) | |
| meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} | |
| assign_to_checkpoint( | |
| paths, | |
| new_checkpoint, | |
| vae_state_dict, | |
| additional_replacements=[meta_path], | |
| config=config, | |
| ) | |
| conv_attn_to_linear(new_checkpoint) | |
| return new_checkpoint | |
| def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): | |
| """ | |
| Updates paths inside resnets to the new naming scheme (local renaming) | |
| """ | |
| mapping = [] | |
| for old_item in old_list: | |
| new_item = old_item | |
| new_item = new_item.replace("nin_shortcut", "conv_shortcut") | |
| new_item = shave_segments( | |
| new_item, n_shave_prefix_segments=n_shave_prefix_segments | |
| ) | |
| mapping.append({"old": old_item, "new": new_item}) | |
| return mapping | |
| def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): | |
| """ | |
| Updates paths inside attentions to the new naming scheme (local renaming) | |
| """ | |
| mapping = [] | |
| for old_item in old_list: | |
| new_item = old_item | |
| new_item = new_item.replace("norm.weight", "group_norm.weight") | |
| new_item = new_item.replace("norm.bias", "group_norm.bias") | |
| new_item = new_item.replace("q.weight", "to_q.weight") | |
| new_item = new_item.replace("q.bias", "to_q.bias") | |
| new_item = new_item.replace("k.weight", "to_k.weight") | |
| new_item = new_item.replace("k.bias", "to_k.bias") | |
| new_item = new_item.replace("v.weight", "to_v.weight") | |
| new_item = new_item.replace("v.bias", "to_v.bias") | |
| new_item = new_item.replace("proj_out.weight", "to_out.0.weight") | |
| new_item = new_item.replace("proj_out.bias", "to_out.0.bias") | |
| new_item = shave_segments( | |
| new_item, n_shave_prefix_segments=n_shave_prefix_segments | |
| ) | |
| mapping.append({"old": old_item, "new": new_item}) | |
| return mapping | |
| def conv_attn_to_linear(checkpoint): | |
| keys = list(checkpoint.keys()) | |
| attn_keys = ["query.weight", "key.weight", "value.weight"] | |
| for key in keys: | |
| if ".".join(key.split(".")[-2:]) in attn_keys: | |
| if checkpoint[key].ndim > 2: | |
| checkpoint[key] = checkpoint[key][:, :, 0, 0] | |
| elif "proj_attn.weight" in key: | |
| if checkpoint[key].ndim > 2: | |
| checkpoint[key] = checkpoint[key][:, :, 0] | |
| def convert_from_original_zero123_ckpt( | |
| checkpoint_path, original_config_file, extract_ema, device | |
| ): | |
| ckpt = torch.load(checkpoint_path, map_location=device) | |
| global_step = ckpt["global_step"] | |
| checkpoint = ckpt["state_dict"] | |
| del ckpt | |
| torch.cuda.empty_cache() | |
| from omegaconf import OmegaConf | |
| original_config = OmegaConf.load(original_config_file) | |
| model_type = original_config.model.params.cond_stage_config.target.split(".")[-1] | |
| num_in_channels = 8 | |
| original_config["model"]["params"]["unet_config"]["params"][ | |
| "in_channels" | |
| ] = num_in_channels | |
| prediction_type = "epsilon" | |
| image_size = 256 | |
| num_train_timesteps = ( | |
| getattr(original_config.model.params, "timesteps", None) or 1000 | |
| ) | |
| beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02 | |
| beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085 | |
| scheduler = DDIMScheduler( | |
| beta_end=beta_end, | |
| beta_schedule="scaled_linear", | |
| beta_start=beta_start, | |
| num_train_timesteps=num_train_timesteps, | |
| steps_offset=1, | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| prediction_type=prediction_type, | |
| ) | |
| scheduler.register_to_config(clip_sample=False) | |
| # Convert the UNet2DConditionModel model. | |
| upcast_attention = None | |
| unet_config = create_unet_diffusers_config(original_config, image_size=image_size) | |
| unet_config["upcast_attention"] = upcast_attention | |
| with init_empty_weights(): | |
| unet = UNet2DConditionModel(**unet_config) | |
| converted_unet_checkpoint = convert_ldm_unet_checkpoint( | |
| checkpoint, unet_config, path=None, extract_ema=extract_ema | |
| ) | |
| for param_name, param in converted_unet_checkpoint.items(): | |
| set_module_tensor_to_device(unet, param_name, "cpu", value=param) | |
| # Convert the VAE model. | |
| vae_config = create_vae_diffusers_config(original_config, image_size=image_size) | |
| converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config) | |
| if ( | |
| "model" in original_config | |
| and "params" in original_config.model | |
| and "scale_factor" in original_config.model.params | |
| ): | |
| vae_scaling_factor = original_config.model.params.scale_factor | |
| else: | |
| vae_scaling_factor = 0.18215 # default SD scaling factor | |
| vae_config["scaling_factor"] = vae_scaling_factor | |
| with init_empty_weights(): | |
| vae = AutoencoderKL(**vae_config) | |
| for param_name, param in converted_vae_checkpoint.items(): | |
| set_module_tensor_to_device(vae, param_name, "cpu", value=param) | |
| feature_extractor = CLIPImageProcessor.from_pretrained( | |
| "lambdalabs/sd-image-variations-diffusers", subfolder="feature_extractor" | |
| ) | |
| image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
| "lambdalabs/sd-image-variations-diffusers", subfolder="image_encoder" | |
| ) | |
| clip_camera_projection = CLIPCameraProjection(additional_embeddings=4) | |
| clip_camera_projection.load_state_dict( | |
| { | |
| "proj.weight": checkpoint["cc_projection.weight"].cpu(), | |
| "proj.bias": checkpoint["cc_projection.bias"].cpu(), | |
| } | |
| ) | |
| pipe = Zero123Pipeline( | |
| vae, | |
| image_encoder, | |
| unet, | |
| scheduler, | |
| None, | |
| feature_extractor, | |
| clip_camera_projection, | |
| requires_safety_checker=False, | |
| ) | |
| return pipe | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--checkpoint_path", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="Path to the checkpoint to convert.", | |
| ) | |
| parser.add_argument( | |
| "--original_config_file", | |
| default=None, | |
| type=str, | |
| help="The YAML config file corresponding to the original architecture.", | |
| ) | |
| parser.add_argument( | |
| "--extract_ema", | |
| action="store_true", | |
| help=( | |
| "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" | |
| " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" | |
| " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--to_safetensors", | |
| action="store_true", | |
| help="Whether to store pipeline in safetensors format or not.", | |
| ) | |
| parser.add_argument( | |
| "--half", action="store_true", help="Save weights in half precision." | |
| ) | |
| parser.add_argument( | |
| "--dump_path", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="Path to the output model.", | |
| ) | |
| parser.add_argument( | |
| "--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)" | |
| ) | |
| args = parser.parse_args() | |
| pipe = convert_from_original_zero123_ckpt( | |
| checkpoint_path=args.checkpoint_path, | |
| original_config_file=args.original_config_file, | |
| extract_ema=args.extract_ema, | |
| device=args.device, | |
| ) | |
| if args.half: | |
| pipe.to(torch_dtype=torch.float16) | |
| pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | |