Spaces:
Sleeping
Sleeping
File size: 19,713 Bytes
c4d4675 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
import os
TOOL_SAVE_MEMORY = {
"name" : "tool_save_memory",
"description": "Used to store information the user requested to remember. Can optionally specify index to overwrite existing memories. Memorized information will be used in system prompt.",
"input_schema": {
"type": "object",
"properties": {
"memory_data": {
"type": "string",
"description": "Summarized version of the information to remember, compressed to use the least tokens possible while preserving all relevant facts"
},
"index": {
"type": "integer",
"description": "Optional index where to store the memory. If provided, overwrites existing memory at that index. If not provided, appends to end of memory list.",
"minimum": 0
}
},
"required": ["memory_data"]
}
}
def tool_save_memory(app_context, memory_data: str, index: int = None):
system_memory = app_context["system_memory"]
system_memory_max_size = app_context["system_memory_max_size"]
if index is not None and index < len(system_memory):
system_memory[index] = memory_data
status = f"β
Updated memory `{index}`: `{memory_data}`."
else:
system_memory.append(memory_data)
system_memory[:] = system_memory[:system_memory_max_size]
status = f"β
Added new memory: `{memory_data}`."
yield {
"status" : status,
"result" : None
}
TOOL_DELETE_MEMORY = {
"name": "tool_delete_memory",
"description": "Used to discard information that was previously stored in memory.",
"input_schema": {
"type": "object",
"properties": {
"memory_index": {
"type": "integer",
"description": "The index of the memory slot to discard. The system prompt enumerates all memories at all times, prefixed by their memory slot, this is what should be referenced."
}
},
"required": ["memory_index"]
}
}
def tool_delete_memory(app_context, memory_index: int):
system_memory = app_context["system_memory"]
memory_data = system_memory[memory_index]
system_memory.pop(memory_index)
yield {
"status" : f"β
Deleted memory: `{memory_data}`.",
"result" : None
}
TOOL_PLACES_NEARBY = {
"name": "tool_places_nearby",
"description": "Search for places using Google Places API with various filtering options",
"input_schema": {
"type": "object",
"properties": {
"type": {
"type": "string",
"description": "Type of place to search for",
"enum": [
# Automotive
"car_dealer", "car_rental", "car_repair", "car_wash", "electric_vehicle_charging_station", "gas_station", "parking", "rest_stop",
# Business
"corporate_office", "farm", "ranch",
# Culture
"art_gallery", "art_studio", "auditorium", "cultural_landmark", "historical_place", "monument", "museum", "performing_arts_theater", "sculpture",
# Education
"library", "preschool", "primary_school", "school", "secondary_school", "university",
# Entertainment and Recreation
"adventure_sports_center", "amphitheatre", "amusement_center", "amusement_park", "aquarium", "banquet_hall", "barbecue_area", "botanical_garden",
"bowling_alley", "casino", "childrens_camp", "comedy_club", "community_center", "concert_hall", "convention_center", "cultural_center",
"cycling_park", "dance_hall", "dog_park", "event_venue", "ferris_wheel", "garden", "hiking_area", "historical_landmark", "internet_cafe",
"karaoke", "marina", "movie_rental", "movie_theater", "national_park", "night_club", "observation_deck", "off_roading_area", "opera_house",
"park", "philharmonic_hall", "picnic_ground", "planetarium", "plaza", "roller_coaster", "skateboard_park", "state_park", "tourist_attraction",
"video_arcade", "visitor_center", "water_park", "wedding_venue", "wildlife_park", "wildlife_refuge", "zoo",
# Facilities
"public_bath", "public_bathroom", "stable",
# Finance
"accounting", "atm", "bank",
# Food and Drink
"acai_shop", "afghani_restaurant", "african_restaurant", "american_restaurant", "asian_restaurant", "bagel_shop", "bakery", "bar",
"bar_and_grill", "barbecue_restaurant", "brazilian_restaurant", "breakfast_restaurant", "brunch_restaurant", "buffet_restaurant", "cafe",
"cafeteria", "candy_store", "cat_cafe", "chinese_restaurant", "chocolate_factory", "chocolate_shop", "coffee_shop", "confectionery",
"deli", "dessert_restaurant", "dessert_shop", "diner", "dog_cafe", "donut_shop", "fast_food_restaurant", "fine_dining_restaurant",
"food_court", "french_restaurant", "greek_restaurant", "hamburger_restaurant", "ice_cream_shop", "indian_restaurant", "indonesian_restaurant",
"italian_restaurant", "japanese_restaurant", "juice_shop", "korean_restaurant", "lebanese_restaurant", "meal_delivery", "meal_takeaway",
"mediterranean_restaurant", "mexican_restaurant", "middle_eastern_restaurant", "pizza_restaurant", "pub", "ramen_restaurant", "restaurant",
"sandwich_shop", "seafood_restaurant", "spanish_restaurant", "steak_house", "sushi_restaurant", "tea_house", "thai_restaurant",
"turkish_restaurant", "vegan_restaurant", "vegetarian_restaurant", "vietnamese_restaurant", "wine_bar",
# Geographical Areas
"administrative_area_level_1", "administrative_area_level_2", "country", "locality", "postal_code", "school_district",
# Government
"city_hall", "courthouse", "embassy", "fire_station", "government_office", "local_government_office", "neighborhood_police_station",
"police", "post_office",
# Health and Wellness
"chiropractor", "dental_clinic", "dentist", "doctor", "drugstore", "hospital", "massage", "medical_lab", "pharmacy", "physiotherapist",
"sauna", "skin_care_clinic", "spa", "tanning_studio", "wellness_center", "yoga_studio",
# Housing
"apartment_building", "apartment_complex", "condominium_complex", "housing_complex",
# Lodging
"bed_and_breakfast", "budget_japanese_inn", "campground", "camping_cabin", "cottage", "extended_stay_hotel", "farmstay", "guest_house",
"hostel", "hotel", "inn", "japanese_inn", "lodging", "mobile_home_park", "motel", "private_guest_room", "resort_hotel", "rv_park",
# Natural Features
"beach",
# Places of Worship
"church", "hindu_temple", "mosque", "synagogue",
# Services
"astrologer", "barber_shop", "beautician", "beauty_salon", "body_art_service", "catering_service", "cemetery", "child_care_agency",
"consultant", "courier_service", "electrician", "florist", "food_delivery", "foot_care", "funeral_home", "hair_care", "hair_salon",
"insurance_agency", "laundry", "lawyer", "locksmith", "makeup_artist", "moving_company", "nail_salon", "painter", "plumber",
"psychic", "real_estate_agency", "roofing_contractor", "storage", "summer_camp_organizer", "tailor", "telecommunications_service_provider",
"tour_agency", "tourist_information_center", "travel_agency", "veterinary_care",
# Shopping
"asian_grocery_store", "auto_parts_store", "bicycle_store", "book_store", "butcher_shop", "cell_phone_store", "clothing_store",
"convenience_store", "department_store", "discount_store", "electronics_store", "food_store", "furniture_store", "gift_shop",
"grocery_store", "hardware_store", "home_goods_store", "home_improvement_store", "jewelry_store", "liquor_store", "market", "pet_store",
"shoe_store", "shopping_mall", "sporting_goods_store", "store", "supermarket", "warehouse_store", "wholesaler",
# Sports
"arena", "athletic_field", "fishing_charter", "fishing_pond", "fitness_center", "golf_course", "gym", "ice_skating_rink", "playground",
"ski_resort", "sports_activity_location", "sports_club", "sports_coaching", "sports_complex", "stadium", "swimming_pool",
# Transportation
"airport", "airstrip", "bus_station", "bus_stop", "ferry_terminal", "heliport", "international_airport", "light_rail_station",
"park_and_ride", "subway_station", "taxi_stand", "train_station", "transit_depot", "transit_station", "truck_stop",
# Table B Additional Types
"administrative_area_level_3", "administrative_area_level_4", "administrative_area_level_5", "administrative_area_level_6",
"administrative_area_level_7", "archipelago", "colloquial_area", "continent", "establishment", "finance", "floor", "food",
"general_contractor", "geocode", "health", "intersection", "landmark", "natural_feature", "neighborhood", "place_of_worship",
"plus_code", "point_of_interest", "political", "post_box", "postal_code_prefix", "postal_code_suffix", "postal_town", "premise",
"room", "route", "street_address", "street_number", "sublocality", "sublocality_level_1", "sublocality_level_2", "sublocality_level_3",
"sublocality_level_4", "sublocality_level_5", "subpremise", "town_square"
]
},
"location": {
"type": "object",
"properties": {
"latitude": {"type": "number", "minimum": -90, "maximum": 90},
"longitude": {"type": "number", "minimum": -180, "maximum": 180}
},
"required": ["latitude", "longitude"],
"description": "Geographic coordinates of the search center point"
},
"radius": {
"type": "integer",
"description": "Search radius in meters",
"minimum": 1,
"maximum": 50000
},
"keyword": {
"type": "string",
"description": "Term to match against all content indexed for this place"
},
"language": {
"type": "string",
"description": "The language code for the results (e.g., 'en', 'pt')"
},
"min_price": {
"type": "integer",
"minimum": 0,
"maximum": 4,
"description": "Minimum price level (0=most affordable, 4=most expensive)"
},
"max_price": {
"type": "integer",
"minimum": 0,
"maximum": 4,
"description": "Maximum price level (0=most affordable, 4=most expensive)"
},
"name": {
"type": "string",
"description": "Terms to match against place names"
},
"open_now": {
"type": "boolean",
"description": "Return only places that are currently open"
},
"rank_by": {
"type": "string",
"enum": ["prominence", "distance"],
"description": "Order in which to rank results"
},
"page_token": {
"type": "string",
"description": "Token for retrieving the next page of results"
}
},
"required": ["location"]
}
}
def tool_places_nearby(
app_context,
location: dict,
type: str = None,
radius: int = None,
keyword: str = None,
language: str = None,
min_price: int = None,
max_price: int = None,
name: str = None,
open_now: bool = False,
rank_by: str = None,
page_token: str = None
) -> dict:
import googlemaps
yield {"status" : f"β³ Searching for locations..."}
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_MAPS_API_KEY'))
# Convert location dict to tuple
location_tuple = (location['latitude'], location['longitude'])
# Build params dict with only non-None values
params = {
'type': type,
'location': location_tuple,
'keyword': keyword,
'language': language,
'min_price': min_price,
'max_price': max_price,
'name': name,
'open_now': open_now,
'rank_by': rank_by,
'page_token': page_token
}
# Add radius if specified (required unless rank_by=distance)
if radius is not None: params['radius'] = radius
elif rank_by != 'distance': params['radius'] = 1000 # Default radius
# Remove None values
params = {k: v for k, v in params.items() if v is not None}
# Make the API call
result = gmaps.places_nearby(**params)
locations = result.get('results', [])
yield {
"status" : f"β
Found `{len(locations)}` locations.",
"result" : locations
}
TOOL_CALCULATOR = {
"name": "tool_calculator",
"description": "Perform mathematical operations with error handling and precision tracking",
"input_schema": {
"type": "object",
"properties": {
"first_number": {
"type": "number",
"description": "First operand for the calculation"
},
"second_number": {
"type": "number",
"description": "Second operand for the calculation"
},
"operation": {
"type": "string",
"description": "Mathematical operation to perform",
"enum": ["add", "subtract", "multiply", "divide"]
}
},
"required": ["first_number", "second_number", "operation"]
}
}
def tool_calculator(app_context, first_number, second_number, operation: str):
x, y = first_number, second_number
result = None
if operation == "add": result = x + y
elif operation == "subtract": result = x - y
elif operation == "multiply": result = x * y
elif operation == "divide": result = x / y if y != 0 else None
yield {"result" : f"β³ Searching for locations..."}
return result
TOOL_GEOCODE = {
"name": "tool_geocode",
"description": "Convert addresses into latitude and longitude coordinates using Google Geocoding API",
"input_schema": {
"type": "object",
"properties": {
"address": {
"type": "string",
"description": "Address to convert to coordinates (e.g. 'Porto, Portugal' or 'Avenida dos Aliados, Porto')"
}
},
"required": ["address"]
}
}
def tool_geocode(app_context, address: str) -> dict:
# Haversine formula to calculate the great-circle distance
def _haversine(lat1, lon1, lat2, lon2):
import math
# Convert latitude and longitude from degrees to radians
lat1, lon1, lat2, lon2 = map(math.radians, [lat1, lon1, lat2, lon2])
# Radius of Earth in kilometers
R = 6371.0
# Differences in coordinates
dlat = lat2 - lat1
dlon = lon2 - lon1
# Haversine formula
a = math.sin(dlat / 2)**2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon / 2)**2
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
distance = R * c
return distance
import googlemaps
yield {"status" : f"β³ Geocoding '{address}'..."}
# TODO: reuse gmaps client
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_MAPS_API_KEY'))
result = gmaps.geocode(address)
# Retrieve coordinates
#location = result[0]['geometry']['location']
#latitude = location["lat"]
#longitude = location["lng"]
# Retrieve bounding box
bounds = result[0]['geometry']['bounds']
northeast = bounds['northeast']
southwest = bounds['southwest']
# Calculate the center of the bounding box
center_lat = (northeast['lat'] + southwest['lat']) / 2
center_lng = (northeast['lng'] + southwest['lng']) / 2
center = {"lat": center_lat, "lng": center_lng}
# Calculate the radius of the bounding box
radius = _haversine(center_lat, center_lng, northeast['lat'], northeast['lng'])
yield {
"status" : f"β
Geocoded `{address}` to center=`({center_lat},{center_lng}), radius={radius}m`.",
"result" : {
"center": center,
"radius" : radius
}
}
TOOL_PLACE_DETAILS = {
"name": "tool_place_details",
"description": "Get detailed information about a specific place using its place_id from Google Places API",
"input_schema": {
"type": "object",
"properties": {
"place_id": {
"type": "string",
"description": "The place_id of the location to get details for. This can be obtained from the results of places_nearby searches."
},
"language": {
"type": "string",
"description": "The language code for the results (e.g., 'en', 'pt')"
},
"fields": {
"type": "array",
"description": "List of specific fields to return. If empty, returns all available fields.",
"items": {
"type": "string",
"enum": [
"address_component", "adr_address", "business_status",
"formatted_address", "geometry", "icon", "name",
"photo", "place_id", "plus_code", "type",
"url", "utc_offset", "vicinity", "formatted_phone_number",
"international_phone_number", "opening_hours",
"website", "price_level", "rating", "review",
"user_ratings_total"
]
}
}
},
"required": ["place_id"]
}
}
def tool_place_details(app_context, place_id: str, language: str = None, fields: list = None) -> dict:
import googlemaps
yield {"status" : f"β³ Looking up details on location..."}
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_MAPS_API_KEY'))
params = {'place_id': place_id}
if language: params['language'] = language
if fields: params['fields'] = fields
result = gmaps.place(**params)
details = result.get('result', {})
yield {
"status" : f"β
Location details fetched.",
"result" : details
}
TOOLS = (
(TOOL_SAVE_MEMORY, tool_save_memory),
(TOOL_DELETE_MEMORY, tool_delete_memory),
(TOOL_CALCULATOR, tool_calculator),
(TOOL_PLACES_NEARBY, tool_places_nearby),
(TOOL_GEOCODE, tool_geocode),
(TOOL_PLACE_DETAILS, tool_place_details)
)
TOOLS_SPECS = {tool[0]["name"]: tool[0] for tool in TOOLS}
TOOLS_FUNCTIONS = {tool[0]["name"]: tool[1] for tool in TOOLS}
|